
Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 1

MODULE I

1.1 THE WAY OF THE PROGRAM

✓ Programs are generally written to solve the real-time arithmetic/logical problems.

✓ Nowadays, computational devices like personal computer, laptop, and cell phones are

embedded with operating system, memory and processing unit. Using such devices

one can write a program in the language (which a computer can understand) of one’s

choice to solve various types of problems.

✓ Humans are tend get bored by doing computational tasks multiple times. Hence, the

computer can act as a personal assistant for people for doing their job!! To make a

computer to solve the required problem, one has to feed the proper program to it.

Hence, one should know how to write a program!!

✓ There are many programming languages that suit several situations. The programmer

must be able to choose the suitable programming language for solving the required

problem based on the factors like computational ability of the device, data structures

that are supported in the language, complexity involved in implementing the

algorithm in that language etc.

❖ Creativity and Motivation

✓ When a person starts programming, he himself will be both the programmer and

the end- user. Because, he will be learning to solve the problems.

✓ But, later, he may become a proficient programmer. A programmer should have

logical thinking ability to solve a given problem. He/she should be creative in

analyzing the given problems, finding the possible solutions, optimizing the

resources available and delivering the best possible results to the end-user.

✓ Motivation behind programming may be a job-requirement and such other

prospects. But the programmer should follow certain ethics in delivering the best

possible output to his/her clients.

✓ The responsibilities of a programmer include developing a feasible, user-friendly

software with very less or no hassles.

✓ The user is expected to have only the abstract knowledge about the working of

software, but not the implementation details. Hence, the programmer should strive

hard towards developing most effective software.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 2

1.2 COMPUTER HARDWARE ARCHITECTURE

To understand the art programming, it is better to know the basic architecture of

computer hardware.

The computer system involves some of the important parts as shown in Figure 1.1,

these parts are as explained below:

Central Processing Unit (CPU): It performs basic arithmetic, logical, control and

I/O operations specified by the program instructions. CPU will perform the given

tasks with a tremendous speed. Hence, the good programmer has to keep the CPU

busy by providing enough tasks to it.

Main Memory: It is the storage area to which the CPU has a direct access. Usually,

the programs stored in the secondary storage are brought into main memory before

the execution. The processor (CPU) will pick a job from the main memory and

performs the tasks. Usually, information stored in the main memory will be vanished

when the computer is turned-off.

Figure 1.1 Computer Hardware Architecture

Secondary Memory: The secondary memory is the permanent storage of computer.

Usually, the size of secondary memory will be considerably larger than that of main

memory. Hard disk, USB drive etc can be considered as secondary memory storage.

I/O Devices: These are the medium of communication between the user and the

computer. Keyboard, mouse, monitor, printer etc. are the examples of I/O devices.

Network Connection: Nowadays, most of the computers are connected to network

and hence they can communicate with other computers in a network. Retrieving the

Software

What

Secondary

Memory

Main

Memory

Central

Processing Unit

Input and Output

Devices

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 3

information from other computers via network will be slower compared to accessing

the secondary memory. Moreover, network is not reliable always due to problem in

connection.

The programmer has to use above resources sensibly to solve the problem.

Usually, a programmer will be communicating with CPU by telling it “what to do

next‟. The usage of main memory, secondary memory, I/O devices also can be

controlled by the programmer.

To communicate with the CPU for solving a specific problem, one has to write a set

of instructions. Such a set of instructions is called as a program.

1.3 UNDERSTANDING PROGRAMMING

A programmer must have skills to look at the data/information available about a

problem, analyze it and then to build a program to solve the problem. The skills

to be possessed by a good programmer includes –

Thorough knowledge of programming language: One needs to know the

vocabulary and grammar (technically known as syntax) of the programming language.

This will help in constructing proper instructions in the program.

Skill of implementing an idea: A programmer should be like a „story teller‟. That

is, he must be capable of conveying something effectively. He/she must be able to

solve the problem by designing suitable algorithm and implementing it. And, the

program must provide appropriate output as expected.

Thus, the art of programming requires the knowledge about the problem’s requirement

and the strength/weakness of the programming language chosen for the

implementation. It is always advisable to choose appropriate programming language

that can cater the complexity of the problem to be solved.

1.4 Words and Sentences

Every programming language has its own constructs to form syntax of the language.

Basic constructs of a programming language includes set of characters and keywords

that it supports.

The keywords have special meaning in any language and they are intended for doing

specific task. Python has a finite set of keywords as given in Table below.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 4

Table 1: Keywords in Python

programmer may use variables to store the values in a program.

Unlike many other programming languages, a variable in Python need not be declared

before its use.

1.5 PYTHON EDITORS AND INSTALLING PYTHON

Before getting into details of the programming language Python, it is better to learn how to

install the software.

Python is freely downloadable from the internet. There are multiple IDEs (Integrated

Development Environment) available for working with Python. Some of them are

PyCharm, LiClipse, IDLE etc.

When you install Python, the IDLE editor will be available automatically. Apart from all

these editors, Python program can be run on command prompt also.

One has to install suitable IDE depending on their need and the Operating System they

are using.

Because, there are separate set of editors (IDE) available for different OS like Window,

UNIX, Ubuntu, Soloaris, Mac, etc. The basic Python can be downloaded from the link:

https://www.python.org/downloads/

 Python has rich set of libraries for various purposes like large-scale data processing,

predictive analytics, scientific computing etc. Based on one‟s need, the required packages

can be downloaded. But, there is a free open source distribution Anaconda, which

simplifies package management and deployment.

Hence, it is suggested for the readers to install Anaconda from the below given link, rather

than just installing a simple Python.

and as assert Break class continue

def del elif Else except False

finally for from Global if import

In is lambda None nonlocal not

Or pass raise Return True try

while with Yield

https://www.python.org/downloads/

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 5

https://anaconda.org/anaconda/python

Successful installation of anaconda provides you Python in a command prompt, the default

editor IDLE and also a browser-based interactive computing environment known as jupyter

notebook.

❖ Conversing with Python

Once Python is installed, one can go ahead with working with Python.

Use the IDE of your choice for doing programs in Python.

 After installing Python (or Anaconda distribution), if you just type „python‟ in the

command prompt, you will get the message as shown in Figure 1.2.

Figure 1.2: Python initialization in command prompt

The prompt >>> (usually called as chevron) indicates the system is ready to take Python

instructions.

If you would like to use the default IDE of Python, that is, the IDLE, then you can just run

IDLE and you will get the editor as shown in Figure 1.3.

https://anaconda.org/anaconda/python

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 6

Figure 1.3: Python IDLE editor

After understanding the basics of few editors of Python, let us start our communication

with Python, by saying Hello World. The Python uses print() function for displaying the

contents. Consider the following code –

>>> print(“Hello World”) #type this and press

enter key

Hello World #output displayed

>>> #prompt returns again

Here, after typing the first line of code and pressing the enter key, we could able to get

the output of that line immediately. Then the prompt (>>>) is returned on the screen.

This indicates, Python is ready to take next instruction as input for processing.

Once we are done with the program, we can close or terminate Python by giving quit()

command as shown –

>>> quit() #Python terminates

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 7

❖ Terminology: Interpreter and Compiler

All digital computers can understand only the machine language written in terms of zeros

and ones. But, for the programmer, it is difficult to code in machine language.

Hence, we generally use high level programming languages like Java, C++, PHP, Perl,

JavaScript etc.

Python is also one of the high level programming languages. The programs written in high

level languages are then translated to machine level instruction so as to be executed by CPU.

How this translation behaves depending on the type of translators viz. compilers and

interpreters.

A compiler translates the source code of high-level programming language into machine

level language. For this purpose, the source code must be a complete program stored in a file

(with extension, say, .java, .c, .cpp etc). The compiler generates executable files (usually

with extensions

.exe, .dll etc) that are in machine language. Later, these executable files are executed to give

the output of the program.

On the other hand, interpreter performs the instructions directly, without requiring them to

be pre- compiled. Interpreter parses (syntactic analysis) the source code ant interprets it

immediately. Hence, every line of code can generate the output immediately, and the source

code as a complete set, need not be stored in a file. That is why, in the previous section, the

usage of single line print(“Hello World”) could able to generate the output immediately.

Consider an example of adding two numbers –

>>> x=10

>>> y=20

>>> z= x+y

>>> print(z)

30

Here, x, y and z are variables storing respective values. As each line of code above is

processed immediately after the line, the variables are storing the given values.

Observe that, though each line is treated independently, the knowledge (or information)

gained in the previous line will be retained by Python and hence, the further lines can make

use of previously used variables.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 8

Thus, each line that we write at the Python prompt are logically related, though they look

independent.

NOTE that, Python do not require variable declaration (unlike in C, C++, Java etc) before

its use. One can use any valid variable name for storing the values. Depending on the type

(like number, string etc) of the value being assigned, the type and behavior of the variable

name is judged by Python.

❖ Writing a Program

As Python is interpreted language, one can keep typing every line of code one after the

other (and immediately getting the output of each line) as shown in previous section.

But, in real-time scenario, typing a big program is not a good idea. It is not easy to logically

debug such lines.

Hence, Python programs can be stored in a file with extension .py and then can be run using

python command.

 Programs written within a file are obviously reusable and can be run whenever we want.

Also, they are transferrable from one machine to other machine via pen-drive, CD etc.

❖ What is a Program?

A program is a sequence of instructions intended to do some task.

 For example, if we need to count the number of occurrences of each word in a text

document, we can write a program to do so.

Writing a program will make the task easier compared to manually counting the words in

a document.

 Moreover, most of the times, the program is a generic solution. Hence, the same program

may be used to count the frequency of words in another file.

The person who does not know anything about the programming also can run this program

to count the words.

Programming languages like Python will act as an intermediary between the computer and

the programmer. The end-user can request the programmer to write a program to solve one’s

problem.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 9

1.6 THE BUILDING BLOCKS OF PROGRAMS

There are certain low-level conceptual structures to construct a program in any

programming language.

They are called as building-blocks of a program and listed below –

➢ Input: Every program may take some inputs from outside. The input may be through

keyboard, mouse, disk-file etc. or even through some sensors like microphone, GPS

etc.

➢ Output: Purpose of a program itself is to find the solution to a problem. Hence, every

program must generate at least one output. Output may be displayed on a monitor or

can be stored in file. Output of a program may even be a music/voice message.

➢ Sequential Execution: In general, the instructions in the program are sequentially

executed from the top.

➢ Conditional Execution: In some situations, a set of instructions have to be executed

based on the truth-value of a variable or expression. Then conditional constructs (like if) have

to be used. If the condition is true, one set of instructions will be executed and if the condition

is false, the true-block is skipped.

➢ Repeated Execution: Some of the problems require a set of instructions to be repeated

multiple times. Such statements can be written with the help of looping structures like

for, while etc.

➢ Reuse: When we write the programs for general-purpose utility tasks, it is better to

write them with a separate name, so that they can be used multiple times

whenever/wherever required. This is possible with the help of functions.

The art of programming involves thorough understanding of the above constructs and

using them legibly.

❖ What Could Possibly Go Wrong?

It is obvious that one can do mistakes while writing a program. The possible mistakes are

categorized as below –

➢ Syntax Errors: The statements which are not following the grammar (or syntax) of

the programming language are tend to result in syntax errors. Python is a case-

sensitive language. Hence, there is a chance that a beginner may do some syntactical

mistakes while writing a program. The lines involving such mistakes are encountered

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 10

by the Python when you run the program and the errors are thrown by specifying

possible reasons for the error. The programmer has to correct them and then proceed

further.

➢ Runtime Errors: Usually called as exceptions. It may occur due to wrong input (like

trying to divide a number by zero), problem in database connectivity etc. When a run-

time error occurs, the program throws some error, which may not be understood by

the normal user. And he/she may not understand how to overcome such errors. Hence,

suspicious lines of code have to be treated by the programmer himself by the

procedure known as exception handling. Python provides mechanism for handling

various possible exceptions like ArithmeticError, FloatingpointError, EOFError,

MemoryError etc

➢ Semantic Errors: A semantic error may happen due to wrong use of variables, wrong

operations or in wrong order. For example, trying to modify un-initialized variable

etc.

• Logical Errors: Logical error occurs due to poor understanding of the problem.

Syntactically, the program will be correct. But, it may not give the expected

output. For example, you are intended to find a%b, but, by mistake you have typed

a/b. Then it is a logical error.

1.7 VARIABLES, EXPRESSIONS AND STATEMENTS

After understanding some important concepts about programming and programming

languages, we will now move on to learn Python as a programming language with its syntax

and constructs.

❖ Values and Types

A value is one of the basic things a program works with.

It may be like 2, 10.5, “Hello” etc.

Each value in Python has a type. Type of 2 is integer; type of 10.5 is

floating point number; “Hello” is string etc.

The type of a value can be checked using type function as shown below –

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 11

>>> type("hello")

<class 'str'>

>>> type(3)

<class 'int'>

>>> type(10.5)

<class 'float'>

>>> type("15")

<class 'str'>

In the above four examples, one can make out various types str, int and float.

 Observe the 4th example – it clearly indicates that whatever enclosed within a double

quote is a string.

❖ Variables

A variable is a named-literal which helps to store a value in the program.

Variables may take value that can be modified wherever required in the program.

Note that, in Python, a variable need not be declared with a specific type before its usage.

Whenever we want a variable, just use it. The type of it will be decided by the value

assigned to it.

A value can be assigned to a variable using assignment operator (=).

Consider the example given below–

>>> x=10

>>> print(x)

10 #output

>>> type(x)

<class 'int'> #type of x is integer

>>> y="hi"

>>> print(y)

hi #output

>>> type(y)

<class 'str'> #type of y is string

It is observed from above examples that the value assigned to variable determines the type

of that variable.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 12

❖ Variable Names and Keywords

It is a good programming practice to name the variable such that its name indicates its

purpose in the program.

There are certain rules to be followed while naming a variable –

• Variable name must not be a keyword

• They can contain alphabets (lowercase and uppercase) and numbers, but should not

start with a number.

• It may contain a special character underscore(_), which is usually used to combine

variables with two words like my_salary, student_name etc. No other special

characters like @, $ etc. are allowed.

• Variable names can start with an underscore character, but we generally avoid it.

• As Python is case-sensitive, variable name sum is different from SUM, Sum etc.

Examples:

>>> 3a=5 #starting with a number

SyntaxError: invalid syntax

>>> a$=10 #contains $

SyntaxError: invalid syntax

>>> if=15 #if is a keyword

SyntaxError: invalid syntax

❖ Statements

A statement is a small unit of code that can be executed by the Python interpreter. It

indicates some action to be carried out. In fact, a program is a sequence of such statements.

Two kinds of statements are: print being an expression statement and assignment statement

Following are the examples of statements –

>>> print("hello") #printing statement

hello

>>> x=5 #assignment statement

>>> print(x) #printing statement

5

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 13

❖ Operators and Operands

Special symbols used to indicate specific tasks are called as operators.

An operator may work on single operand (unary operator) or two operands (binary

operator).

There are several types of operators like arithmetic operators, relational operators, logical

operators etc, in Python.

Arithmetic Operators are used to perform basic operations as listed in Table:

Table2: listing Arithmetic Operators

Operator Meaning Example

+ Addition Sum= a+b

- Subtraction Diff= a-b

* Multiplication Pro= a*b

/ Division
Q = a/b X = 5/3

(X will get a value 1.666666667)

//
Floor Division – returns only

integral part after division

F = a//b

X= 5//3 (X will get a value 1)

%
Modulus remainder after

division

R = a %b

(Remainder after dividing a by b)

** Exponent
E = x** y

(means x to the powder of y)

Relational or Comparison Operators are used to check the relationship (like less than,

greater than etc) between two operands. These operators return a Boolean value – either

True or False.

Assignment Operators: Apart from simple assignment operator = which is used for

assigning values to variables, Python provides compound assignment operators.

For example,

x=x+y can be written as x+=y

Now, += is compound assignment operator. Similarly, one can use most of the arithmetic

and bitwise operators (only binary operators, but not unary) like *, /, %, //, &, ^ etc. as

compound assignment operators.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 14

For example,

>>> x=3

>>> y=5

>>> x+=y #x=x+y

>>> print (x)

8

>>> y//=2 #y=y//2

>>> print(y)

2 #only integer part will be printed

NOTE:

Python has a special feature – one can assign values of different types to multiple variables

in a single statement.

For example,

>>> x, y, st=3, 4.2, "Hello"

>>> print("x= ", x, " y= ",y, " st= ", st)

 x=3 y=4.2 st=Hello

Python supports bitwise operators like &(AND), | (OR), ~(NOT), ^(XOR), >>(right

shift) and <<(left shift). These operators will operate on every bit of the operands.

Working procedure of these operators is same as that in other languages like C and C++.

There are some special operators in Python viz. Identity operator (is and is not) and

membership operator (in and not in). These will be discussed in further Modules.

❖ Expressions

A combination of values, variables and operators is known as expression.

Following are few examples of expression –

x=5

y=x+10

z= x-y*3

The Python interpreter evaluates simple expressions and gives results even without print().

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 15

For example,

>>> 5

5 #displayed as it is

>>> 1+2

3 #displayed the sum

But, such expressions do not have any impact when written into Python script file.

1.8 Order of Operations

When an expression contains more than one operator, the evaluation of operators

depends on the precedence of operators.

 The Python operators follow the precedence rule (which can be remembered as

PEMDAS) as given below –

Parenthesis have the highest precedence in any expression. The operations within

parenthesis will be evaluated first. For example, in the expression (a+b)*c, the

addition has to be done first and then the sum is multiplied with c.

Exponentiation has the 2nd precedence. But, it is right associative. That is, if there

are two exponentiation operations continuously, it will be evaluated from right to

left (unlike most of other operators which are evaluated from left to right).

For example,

>>>print(2**3) #It is 23 8

>>>print(2**3**2)#It is 512 i.e., 2
32

Multiplication and Division are the next priority. Out of these two operations,

whichever comes first in the expression is evaluated.

>>> print(5*2/4) #multiplication and then division

2.5

>>> print(5/4*2) #division and then multiplication

2.5

Addition and Subtraction are the least priority. Out of these two operations,

whichever appears first in the expression is evaluated i.e., they are evaluated from

left to right

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 16

❖ String Operations

String concatenation can be done using + operator as shown below –

>>> x="32"

>>> y="45"

>>> print(x+y)

3245

Observe the output: here, the value of y (a string “45”, but not a number 45) is placed

just in front of value of x(a string “32”). Hence the result would be “3245” and

its type would be string.

NOTE: One can use single quotes to enclose a string value, instead of double quotes.

❖ Asking the User for Input

Python uses the built-in function input() to read the data from the keyboard.

When this function is invoked, the user-input is expected. The input is read till the user

presses enter- key.

For example:

>>> str1=input()

Hello how are you? #user input

>>> print(“String is “,str1)

String is Hello how are you? #printing str1

When input() function is used, the curser will be blinking to receive the data.

For a better understanding, it is better to have a prompt message for the user informing

what needs to be entered as input.

The input() function itself can be used to do so, as shown below –

>>> str1=input("Enter a string: ")

Enter a string: Hello

>>> print("You have entered:",str1)

You have entered: Hello

One can use new-line character \n in the function input() to make the cursor to appear in

the next line of prompt message –

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 17

>>> str1=input("Enter a string:\n")

 Enter a string:

Hello #cursor is pushed here

The key-board input received using input() function is always treated as a string type.

If you need an integer, you need to convert it using the function int().

Observe the following example –

>>> x=input("Enter x:")

Enter x:10 #x takes the value “10”, but not

10

>>> type(x) #So, type of x would be str

<class 'str'>

>>> x=int(input("Enter x:")) #use int()

Enter x:10

>>> type(x) #Now, type of x is int

<class 'int'>

A function float() is used to convert a valid value enclosed within quotes into float number

as shown below –

>>> f=input("Enter a float value:") Enter a float

value: 3.5

>>> type(f)

<class 'str'> #f is actually a string “3.5”

>>> f=float(f) #converting “3.5” into float value 3.5

>>> type(f)

<class 'float'>

A function chr() is used to convert an integer input into equivalent ASCII character.

>>> a=int(input("Enter an integer:"))

 Enter an integer:65

>>> ch=chr(a)

>>> print("Character Equivalent of ", a, "is ",ch)

Character Equivalent of 65 is A

There are several such other utility functions in Python, which will be discussed later.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 18

1.9 Comments

It is a good programming practice to add comments to the program wherever required.

This will help someone to understand the logic of the program. Comment may be in a single

line or spread into multiple lines. A single-line comment in Python starts with the symbol

#. Multiline comments are enclosed within a pair of 3-single quotes.

Ex1. #This is a single-line comment

Ex2. ‘‘‘ This is a

 Multi line

 Comment’’’

Python (and all programming languages) ignores the text written as comment lines.

They are only for the programmer’s (or any reader’s) reference.

❖ Choosing Mnemonic Variable Names

Choosing an appropriate name for variables in the program is always at stake.

Consider the following examples –

Ex1. a=10000

 b=0.3*a

 c=a+b

print(c) #output is 13000

Ex2. basic=10000

da=0.3*basic

gross_sal=basic+da

 print("Gross Sal = ",gross_sal)#output is 13000

One can observe that both of these two examples are performing same task.

But, compared to Ex1, the variables in Ex2 are indicating what is being calculated.

That is, variable names in Ex2 are indicating the purpose for which they are being used in

the program. Such variable names are known as mnemonic variable names. The word

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 19

mnemonic means memory aid. The mnemonic variables are created to help the programmer

to remember the purpose for which they have been created.

Python can understand the set of reserved words (or keywords), and hence it flashes an

error when such words are used as variable names by the programmer.

 Moreover, most of the Python editors have a mechanism to show keywords in a different

color. Hence, programmer can easily make out the keyword immediately when he/she types

that word.

❖ Debugging

Some of the common errors a beginner programmer may make are syntax errors.

Though Python flashes the error with a message, sometimes it may become hard to

understand the cause of errors. Some of the examples are given here –

Ex1: >>> avg sal=10000

 SyntaxError: invalid syntax

Here, there is a space between the terms avg and sal, which is not allowed.

Ex2: >>>m=09

 SyntaxError: invalid token

Python does not allow preceding zeros for numeric values.

Ex3. >>> basic=2000

 >>> da=0.3*Basic

NameError: name 'Basic' is not defined

As Python is case sensitive, basic is different from Basic.

As shown in above examples, the syntax errors will be alerted by Python. But, programmer

is responsible for logical errors or semantic errors. Because, if the program does not yield

into expected output, it is due to mistake done by the programmer, about which Python is

unaware of.

One can observe from previous few examples that when a runtime error occurs, it

displays a term Traceback followed by few indications about errors.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 20

A traceback is a stack trace from the point of error-occurrence down to the call-sequence

till the point of call.

This is helpful when we start using functions and when there is a sequence of multiple

function calls from one to other.

Then, traceback will help the programmer to identify the exact position where the error

occurred.

Most useful part of error message in traceback are –

What kind of error it is

Where it occurred

Compared to runtime errors, syntax errors are easy to find, most of the times. But,

whitespace errors in syntax are quite tricky because spaces and tabs are invisible.

For example –

>>> x=10

>>> y=15

SyntaxError: unexpected indent

The error here is because of additional space given before y. As Python has a different

meaning (separate block of code) for indentation, one cannot give extra spaces as shown

above.

In general, error messages indicate where the problem has occurred. But, the actual error

may be before that point, or even in previous line of code.

1.10 FUNCTIONS

Functions are the building blocks of any programming language.

A sequence of instructions intended to perform a specific independent task is known as a

function.

In this section, we will discuss various types of built-in functions, user-defined functions,

applications/uses of functions etc.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 21

❖ Function Calls

A function is a named sequence of instructions for performing a task.

When we define a function we will give a valid name to it, and then specify the instructions

for performing required task.

Later, whenever we want to do that task, a function is called by its name.

Consider an example:

>>> type(15)

<class 'int'>

Here type is a function name, 15 is the argument to a function and <class 'int'> is the result

of the function.

Usually, a function takes zero or more arguments and returns the result.

❖ Built-in Functions

Python provides a rich set of built-in functions for doing various tasks.

The programmer/user need not know the internal working of these functions; instead, they

need to know only the purpose of such functions.

Some of the built in functions are given below –

❖ max(): This function is used to find maximum value among the arguments. It can be

used for numeric values or even to strings.

 >>>max(10, 20, 14, 12) #maximum of 4 integers

 20

 >>>max("hello world")

 'w' #character having maximum ASCII code

>>>max(3.5, -2.1, 4.8, 15.3, 0.2)

15.3 #maximum of 5 floating point values

❖ min(): As the name suggests, it is used to find minimum of arguments.

 >>>min(10, 20, 14, 12) #minimum of 4 integers

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 22

 10

 >>>min("hello world")

 ' ' #space has least ASCII code here

>>>min(3.5, -2.1, 4.8, 15.3, 0.2)

-2.1 #minimum of 5 floating point values

❖ len(): This function takes a single argument and finds its length. The argument can be

a string, list, tuple etc.

 >>>len(“hello how are you?”)

18

There are many other built-in functions available in Python. They are discussed in

further Modules, wherever they are relevant.

1.11 TYPE CONVERSION FUNCTIONS

As we have seen earlier (while discussing input() function), the type of the variable/value

can be converted using functions int(), float(), str().

Python provides built-in functions that convert values from one type to another

Consider following few examples –

>>>int('20') #integer enclosed within single quotes

 #converted to integer type

>>>int("20") #integer enclosed within double quotes

20

>>>int("hello") #actual string cannot be converted to int

Traceback (most recent call last):

File "<pyshell#23>", line

1, in <module>

int("hello") ValueError:

invalid literal for int()

with base 10: 'hello'

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 23

>>>int(3.8) #float value being converted to integer

3 #round-off will not happen, fraction is ignored

>>>int(-5.6)

-5

>>>float('3.5') #float enclosed within single quotes

3.5 #converted to float type

>>>float(42) #integer is converted to float

42.0

>>>str(4.5) #float converted to string

'4.5'

>>>str(21) #integer converted to string

'21'

❖ Random Numbers

Most of the programs that we write are deterministic.

That is, the input (or range of inputs) to the program is pre-defined and the output of the

program is one of the expected values.

But, for some of the real-time applications in science and technology, we need randomly

generated output. This will help in simulating certain scenario.

Random number generation has important applications in games, noise detection in

electronic communication, statistical sampling theory, cryptography, political and business

prediction etc. These applications require the program to be nondeterministic.

There are several algorithms to generate random numbers. But, as making a program

completely nondeterministic is difficult and may lead to several other consequences, we

generate pseudo- random numbers.

That is, the type (integer, float etc) and range (between 0 and 1, between 1 and 100 etc) of

the random numbers are decided by the programmer, but the actual numbers are unknown.

Moreover, the algorithm to generate the random number is also known to the programmer.

Thus, the random numbers are generated using deterministic computation and hence, they

are known as pseudo-random numbers!!

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 24

Python has a module random for the generation of random numbers. One has to import

this module in the program. The function used is also random().

By default, this function generates a random number between 0.0 and 1.0 (excluding 1.0).

For example –

import random #module random is imported

print(random.random()) #random() function is

invoked

0.7430852580883088 #a random number generated

print(random.random())

0.5287778188896328 #one more random number

Importing a module creates an object.

Using this object, one can access various functions and/or variables defined in that module.

Functions are invoked using a dot operator.

There are several other functions in the module random apart from the function random().

(Do not get confused with module name and function name. Observe the parentheses while

referring a function name).

Few are discussed hereunder:

❖ randint(): It takes two arguments low and high and returns a random integer between

these two arguments (both low and high are inclusive).

For example,

>>>random.randint(2,20)

14 #integer between 2 and 20 generated

>>> random.randint(2,20) 10

❖ choice(): This function takes a sequence (a list type in Python) of numbers as an

argument and returns one of these numbers as a random number. For example,

 >>> t=[1,2, -3, 45, 12, 7, 31, 22] #create a list t

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 25

>>> random.choice(t) #t is argument to choice()

12 #one of the elements in t

>>> random.choice(t)

 1 #one of the elements in t

Various other functions available in random module can be used to generate random

numbers following several probability distributions like Gaussian, Triangular, Uniform,

Exponential, Weibull, Normal etc.

1.12 MATH FUNCTIONS

Python provides a rich set of mathematical functions through the module math. To use

these functions, the math module has to be imported in the code. Some of the important

functions available in math are given hereunder

❖ sqrt(): This function takes one numeric argument and finds the square root of that

argument.

 >>> math.sqrt(34) #integer argument

5.830951894845301

 >>> math.sqrt(21.5) #floating point argument

 4.636809247747852

❖ pi: The constant value pi can be used directly whenever we require.

>>>print (math.pi)

3.141592653589793

❖ log10(): This function is used to find logarithm of the given argument, to the base 10.

>>> math.log10(2)

0.3010299956639812

❖ log(): This is used to compute natural logarithm (base e) of a given number.

>>> math.log(2)

0.6931471805599453

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 26

❖ sin(): As the name suggests, it is used to find sine value of a given argument. Note that,

the argument must be in radians (not degrees). One can convert the number of degrees

into radians by multiplying pi/180 as shown below –

>>>math.sin(90*math.pi/180) #sin(90) is 1

1.0

❖ cos(): Used to find cosine value –

>>>math.cos(45*math.pi/180)

0.7071067811865476

❖ tan(): Function to find tangent of an angle, given as argument.

>>> math.tan(45*math.pi/180)

0.9999999999999999

❖ pow(): This function takes two arguments x and y, then finds x to the power of y.

>>> math.pow(3,4) 81.0

1.13 COMPOSITION

So far, we have looked at the elements of a program—variables, expressions, and

statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small

building blocks and compose them. For example, the argument of a function can be any

kind of expression, including arithmetic operators:

x = math.sin(degrees / 360.0 * 2 * math.pi)

And even function calls:

x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrary expression, with one

exception: the left side of an assignment statement has to be a variable name. Any other

expression on the left side is a syntax error (we will see exceptions to this rule later).

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 27

>>> minutes = hours * 60 # right

>>> hours * 60 = minutes # wrong!

SyntaxError: can't assign to operator

1.14 ADDING NEW FUNCTIONS (USER-DEFINED

FUNCTIONS)

Python facilitates programmer to define his/her own functions.

The function written once can be used wherever and whenever required.

The syntax of user-defined function would be –

def fname(arg_list):

statement_1

 statement_2

…

…

…

…

…

Statement_n

return value

Here def is a keyword indicating it as a function definition.

Fname is any valid name given to the function

arg_list is list of arguments taken by a function. These are treated as inputs

 to the function from the position of function call. There may be zero

 or more arguments to a function.

statements are the list of instructions to perform required task.

return is a keyword used to return the output value. This statement is

 optional

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 28

The first line in the function def fname(arg_list)is known as function header/definition.

The remaining lines constitute function body.

The function header is terminated by a colon and the function body must be indented. To

come out of the function, indentation must be terminated.

Unlike few other programming languages like C, C++ etc, there is

 no main()function or specific location where a user-defined function has to be called.

The programmer has to invoke (call) the function wherever required.

Consider a simple example of user-defined function –

Observe indentation Statements outside the function without indentation.

myfun()is called here.

The output of above program would be –

Example of function

Hello

Inside the function

Example over

The function definition creates an object of type function.

In the above example, myfun is internally an object.

This can be verified by using the statement –

>>>print(myfun) # myfun without parenthesis

<function myfun at 0x0219BFA8>

>>> type(myfun) # myfun without parenthesis

def myfun():

print("Hello")

print("Inside the function")

print("Example of function")

myfun()

print("Example over")

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 29

<class 'function'>

Here, the first output indicates that myfun is an object which is being stored at the memory

address 0x0219BFA8 (0x indicates octal number).

The second output clearly shows myfunis of type function.

(NOTE: In fact, in Python every type is in the form of class. Hence, when we apply type

on any variable/object, it displays respective class name. The detailed study of classes will

be done in Module 4.)

❖ Definitions and uses

Pulling together the code fragments from the previous section, the whole program

looks

like this:

def print_lyrics():

print("Jhony Jhony.")

print("Yes Pappa.")

def repeat_lyrics():

print_lyrics()

print_lyrics()

repeat_lyrics()

This program contains two function definitions: print_lyrics and repeat_lyrics. Function

definitions get executed just like other statements, but the effect is to create function

objects. The statements inside the function do not run until the function is called, and the

function definition generates no output.

1.15 FLOW OF EXECUTION

To ensure that a function is defined before its first use, you have to know the order

statements run in, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are run one at a

time, in order from top to bottom.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 30

Function definitions do not alter the flow of execution of the program, but remember that

statements inside the function don’t run until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next

statement, the flow jumps to the body of the function, runs the statements there, and then

comes back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While

in the middle of one function, the program might have to run the statements in another

function. Then, while running that new function, the program might have to run yet another

function!

Fortunately, Python is good at keeping track of where it is, so each time a function

completes, the program picks up where it left off in the function that called it. When it gets

to the end of the program, it terminates.

In summary, when you read a program, you don’t always want to read from top to bottom.

Sometimes it makes more sense if you follow the flow of execution.

The flow of execution of every program is sequential from top to bottom, a function can

be invoked only after defining it.

Usage of function name before its definition will generate error. Observe the following

code:

>>>print("Example of function")

>>>myfun() #function call before definition

print("Example over")

>>>def myfun(): #function definition is here

 print("Hello")

>>>print("Inside the function")

The above code would generate error

saying NameError: name

'myfun' is not defined

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 31

Functions are meant for code-reusability. That is, a set of instructions written as a function

need not be repeated. Instead, they can be called multiple times whenever required.

Consider the enhanced version of previous program as below –

The output is –

Example of function

Inside myfun()

Inside repeat()

Inside myfun()

Example over

Observe the output of the program to understand the flow of execution of the program.

Initially, we have two function definitions myfun()and repeat()one after the other. But,

functions are not executed unless they are called (or invoked). Hence, the first line to

execute in the above program is –

print("Example of function")

Then, there is a function call repeat(). So, the program control jumps to this function. Inside

repeat(), there is a call for myfun().

Now, program control jumps to myfun()and executes the statements inside and returns back

to repeat() function. The statement print(“Inside repeat()”) is executed.

def myfun():

print("Inside myfun()")

(3)

def repeat():

myfun()

print(“Inside repeat()”)

myfun()

(4)
(5)

print("Example of function")

(6)

(2)
repeat()
print("Example over")

Execution starts here(1)

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 32

Once again there is a call for myfun()function and hence, program control jumps there. The

function myfun() is executed and returns to repeat().

As there are no more statements in repeat(), the control returns to the original position of

its call. Now there is a statement print("Example over")to execute, and program is

terminated.

1.16 PARAMETERS AND ARGUMENTS

In the previous section, we have seen simple example of a user-defined function, where the

function was without any argument.

But, a function may take arguments as an input from the calling function.

Consider an example of a function which takes a single argument as below –

The output would be –

Example of function with arguments

Inside test()

Argument is hello

 Inside test()

Argument is 20 Over!!

In the above program, var is called as parameter and x and y are called as arguments.

 The argument is being passed when a function test() is invoked. The parameter

receives the argument as an input and statements inside the function are executed.

def test(var):

print("Inside test()")

print("Argument is ",var)

print("Example of function with arguments")

x="hello"

test(x)

y=20

test(y)

print("Over!!")

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 33

As Python variables are not of specific data types in general, one can pass any type of value

to the function as an argument.

Python has a special feature of applying multiplication operation on arguments while

passing them to a function. Consider the modified version of above program –

>>>def test(var):

 print("Inside test()")

 print("Argument is ",var)

>>>print("Example of function with arguments")

 x="hello"

>>>test(x*3)

>>>y=20

>>>test(y*3)

>>>print("Over!!")

The output would be –

Example of function with arguments

 Inside test()

Argument is hellohellohello #observe repetition

Inside test()

Argument is 60 #observe multiplication

 Over!!

One can observe that, when the argument is of type string, then multiplication indicates

that string is repeated 3 times.

Whereas, when the argument is of numeric type (here, integer), then the value of that

argument is literally multiplied by 3.

1.17 VARIABLES AND PARAMETERS ARE LOCAL

When you create a variable inside a function, it is local, which means that it only exists

inside the function. For example:

def cat_twice(part1, part2):

cat = part1 + part2

print_twice(cat)

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 34

This function takes two arguments, concatenates them, and prints the result twice. Here

is an example that uses it:

>>> line1 = 'Twinkle Twinkle '

>>> line2 = 'Little Star.'

>>> cat_twice(line1, line2)

Twinkle Twinkle Little Star.

Twinkle Twinkle Little Star.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an

exception:

 main

 Cat_twice

 print_twice

Figure 1.4: Stack diagram.

print(cat)

NameError: name 'cat' is not defined

Parameters are also local.

For example, outside print_twice, there is no such thing as

bruce

1.18 STACK DIAGRAMS

To keep track of which variables can be used where, it is sometimes useful to draw a stack

diagram. Like state diagrams, stack diagrams show the value of each variable, but they

also show the function each variable belongs to Each function is represented by a frame.

A frame is a box with the name of a function beside it and the parameters and variables of

the function inside it. The stack diagram for the previous example is shown in Figure 1.4.

The frames are arranged in a stack that indicates which function called which, and so

 part1 ‘Twinkle Twinkle’

 part2 ‘Little Star.’

 Cat ’Twinkle Twinkle Little Start.’

 Line1 ‘Twinkle Twinkle’

 Line2 ‘Little Star.’

 bruce ‘Twinkle Twinkle Little Star.’

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 35

on. In this example, print_twice was called by cat_twice, and cat_twice was called

by __main__, which is a special name for the topmost frame. When you create a variable

outside of any function, it belongs to __main__. Each parameter refers to the same value

as its corresponding argument. So, part1 has the same value as line1, part2 has the same

value as line2, and bruce has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, the name

of the function that called it, and the name of the function that called that, all the way back

to __main__. For example, if you try to access cat from within print_twice, you get a

NameError:

Traceback (innermost last):

File "test.py", line 13, in __main__

cat_twice(line1, line2)

File "test.py", line 5, in cat_twice

print_twice(cat)

File "test.py", line 9, in print_twice

print(cat)

NameError: name 'cat' is not defined

This list of functions is called a traceback. It tells you what program file the error occurred

in, and what line, and what functions were executing at the time. It also shows the line of

code that caused the error.

The order of the functions in the traceback is the same as the order of the frames in the

stack diagram. The function that is currently running is at the bottom.

1.19 FRUITFUL FUNCTIONS AND VOID FUNCTIONS

A function that performs some task, but do not return any value to the calling function is

known as void function. The examples of user-defined functions considered till now are

void functions.

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 36

The function which returns some result to the calling function after performing a task is

known as fruitful function. The built-in functions like mathematical functions, random

number generating functions etc. that have been considered earlier are examples for fruitful

functions.

 One can write a user-defined function so as to return a value to the calling function

as shown in the following example –

The sample output would be –

 Enter a number:3

 Enter another number:4

 Sum of two numbers: 7

In the above example, The function sum() take two arguments and returns their sum to the

receiving variable s.

When a function returns something and if it is not received using a LHS variable, then the

return value will not be available.

For instance, in the above example if we just use the statement sum(x,y) instead of

s=sum(x,y), then the value returned from the function is of no use.

On the other hand, if we use a variable at LHS while calling void functions, it will receive

None. For example,

p= test(var) #function used in previous example

 print(p)

Now, the value of p would be printed as None. Note that, None is not a string, instead it is

of type class 'NoneType'. This type of object indicates no value.

def sum(a,b):

return a+b

x=int(input("Enter a number:"))

y=int(input("Enter another number:"))

s=sum(x,y)

print("Sum of two numbers:",s)

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 37

❖ Why Functions?

Functions are essential part of programming because of following reasons –

Creating a new function gives the programmer an opportunity to name a group of

statements, which makes the program easier to read, understand, and debug.

Functions can make a program smaller by eliminating repetitive code. If any modification

is required, it can be done only at one place.

Dividing a long program into functions allows the programmer to debug the independent

functions separately and then combine all functions to get the solution of original problem.

Well-designed functions are often useful for many programs. The functions written once

for a specific purpose can be re-used in any other program.

 FOR THE CURIOUS MINDS (Something Beyond The Syllabus)

❖ Special parameters of print() – sep and end :

Consider an example of printing two values using print() as below –

>>> x=10

>>> y=20

>>> print(x,y)

10 20 #space is added between two values

Observe that the two values are separated by a space without mentioning anything

specific. This is possible because of the existence of an argument sep in the print()

function whose default value is white space. This argument makes sure that various

values to be printed are separated by a space for a better representation of output.

The programmer has a liberty in Python to give any other character(or string) as a

separator by explicitly mentioning it in print() as shown below –

>>> print("03","06","2021",sep='-')

03-06-2021

We can observe that the values have been separated by hyphen, which is given as a value

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 38

for the argument sep. Consider one more example –

>>> college="BGSIT"

>>> address=”BGNAGARA"

>>> print(college, address, sep='@')

BGSIT@BGNAGARA

If you want to deliberately suppress any separator, then the value of sep can be set with

empty string as shown below –

>>> print("Hello","World", sep='')

HelloWorld

You might have observed that in Python program, the print() adds a new line after

printing the data. In a Python script file, if you have two statements like –

print(“Hello”)

print(“World”)

then, the output would be

Hello World

This may be quite unusual for those who have experienced programming languages like

C, C++ etc. In these languages, one has to specifically insert a new-line character (\n)

to get the output in different lines. But, in Python without programmer‟s intervention,

a new line will be inserted. This is possible because, the print() function in Python has

one more special argument end whose default value itself is new-line. Again, the default

value of this argument can be changed by the programmer as shown below (Run these

lines using a script file, but not in the terminal/command prompt) –

print(“Hello”, end= „@‟)

print(“World”)

The output would be –

Hello@World

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 39

❖ Formatting the output:

There are various ways of formatting the output and displaying the variables with a

required number of space-width in Python. We will discuss few of them with the help of

examples.

Ex1: When multiple variables have to be displayed embedded within a string, the

format()

function is useful as shown below –

>>> x=10

>>> y=20

>>> print("x={0}, y={1}".format(x,y))

 x=10, y=20

While using format() the arguments of print() must be numbered as 0, 1, 2, 3, etc. and

they must be provided inside the format() in the same order.

Ex2: The format() function can be used to specify the width of the variable (the number

of spaces that the variable should occupy in the output) as well. Consider below given

example which displays a number, its square and its cube.

for x in range(1,5):

print("{0:1d} {1:3d} {2:4d}".format(x,x**2, x**3))

Output:

1 1 1

2 4 8

3 9 27

4 16 64

Here, 1d, 3d and 4d indicates 1-digit space, 2-digit space etc. on the output screen.

Ex3: One can use % symbol to have required number of spaces for a variable. This will

be useful in printing floating point numbers.

>>> x=19/3

>>> print(x)

Python Programming (18EC652) Module 1

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 40

6.333333333333333 #observe number of digits after dot

>>> print("%.3f"%(x)) #only 3 places after decimal point 6.333

>>> x=20/3

 >>> y=13/7

 >>> print("x= ",x, "y=",y) #observe actual digits

 x=6.666666666666667 y= 1.8571428571428572

>>> print("x=%0.4f, y=%0.2f"%(x,y))

x=6.6667, y=1.86 #observe rounding off digits

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 1

MODULE 2

2.1 CONDITIONAL EXECUTION

In general, the statements in a program will be executed sequentially. But,

sometimes we need a set of statements to be executed based on some conditions.

Such situations are discussed in this section.

2.1.1 Floor division and modulus

The floor division operator, //, divides two numbers and rounds down to an integer.

For example, suppose the run time of a movie is 105 minutes. You might want to

know how long that is in hours. Conventional division returns a floating-point

number:

>>> minutes = 105

>>> minutes / 60

1.75

But we don’t normally write hours with decimal points. Floor division returns the

integer number of hours, rounding down:

>>> minutes = 105

>>> hours = minutes // 60

>>> hours

1

To get the remainder, you could subtract off one hour in minutes:

>>> remainder = minutes - hours * 60

>>> remainder

45

An alternative is to use the modulus operator, %, which divides two numbers and

returns

the remainder.

>>> remainder = minutes % 60

>>> remainder

45

The modulus operator is more useful than it seems. For example, you can check

whether one number is divisible by another—if x % y is zero, then x is divisible by

y. Also, you can extract the right-most digit or digits from a number. For example, x

% 10 yields the right-most digit of x (in base 10). Similarly x % 100 yields the last

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 2

two digits. If you are using Python 2, division works differently. The division operator,

/, performs floor division if both operands are integers, and floating-point division if

either operand is a float.

2.1.2 Boolean Expressions
A Boolean Expression is an expression which results in True or False. The True
and False
are special values that belong to class bool. Check the following –

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

Boolean expression may be as below –
>>> 10==12

False

>>> x=10

>>> y=10

>>> x==y

True

Various comparison operations are shown in Table 2.1.

Table 2.1 Relational (Comparison) Operators
Operator Meaning Example

> Greater than a>b

< Less than a= Greater than or equal to a>=b

<= Less than or equal to a<=b

== Comparison a==b

!= Not equal to a !=b

is Is same as a is b
is not Is not same as a is not b

Few Examples:
>>> a=10

>>> b=20

>>> x= a>b

>>> print(x)

False

>>> print(a==b)

False

>>> print("a<b is ", a<b)

 a<b is True

>>> print("a!=b is", a!=b)

 a!=b is True

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 3

>>> 10 is 20

 False

>>> 10 is 10

 True

NOTE: For a first look, the operators == and is look same. Similarly, the operators

!= and is not look the same. But, the operators == and != does the equality

test. That is, they will compare the values stored in the variables. Whereas, the
operators is and is not does the identity test. That is, they will compare

whether two objects are same. Usually, two objects are same when their memory
locations are same. This concept will be more clear when we take up classes and
objects in Python.

2.1.3 Logical Operators
There are 3 logical operators in Python as shown in Table 1.4. (NOTE that symbols
like &&, || are not used in Python for representing logical operators)

Table 2.2 Logical Operators

Operator Meaning Example

and Returns true, if both operands are true a and b

or Returns true, if any one of two operands is true a or b

not Return true, if the operand is false (it is a unary operator) not a

NOTE:
1. Logical operators treat the operands as Boolean (True or False).
2. Python treats any non-zero number as True and zero as False.

3. While using and operator, if the first operand is False, then the second
operand is not evaluated by Python. Because False and’ed with anything is
False.

4. In case of or operator, if the first operand is True, the second operand
is not evaluated. Because True or’ed with anything is True.

Example 1 (with Boolean Operands):
>>> x= True

>>> y= False

>>> print('x and y is', x and y)

x and y is False

>>> print('x or y is', x or y)

x or y is True

>>> print('Complement of x is ', not x)

Complement of x is False

Example 2 (With numeric Operands):
>>> a=-3

>>> b=10

>>> print(a and b) #and operation

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 4

 10 #a is true, hence b is evaluated and printed

>>> print(a or b) #or operation

 -3 #a is true, hence b is not evaluated

>>> print(0 and 5) #0 is false, so printed

0

2.1.4 Conditional Execution
The basic level of conditional execution can be achieved in Python by using if
statement. The syntax and flowcharts are as below –

Observe the colon symbol after condition. When the condition is true, the Statement
block will be executed. Otherwise, it is skipped. A set (block) of statements to be
executed under if is decided by the indentation (tab space) given.

Consider an example –

>>> x=10

>>> if x<40:

 print("Fail") #observe indentation after if

Fail #output

Usually, the if conditions have a statement block. In any case, the programmer feels
to do nothing when the condition is true, the statement block can be skipped by just
typing pass statement as shown below –

>>> if x<0:

pass #do nothing when x is negative

2.1.5 Alternative Execution
A second form of if statement is alternative execution. Here, when the condition is
true, one set of statements will be executed and when the condition is false, another
set of statements will be executed. The syntax and flowchart are as given below –

Entry

False

condition?

True

Exit

Statement Block

True False

Condition?

block-1 block -2

if condition:

Statement block

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 5

As the condition will be either true or false, only one among Statement block-1
and Statement block-2 will be get executed. These two alternatives are known as
branches.

Example:
x=int(input("Enter x:")) if x%2==0:

print("x is even") else:

print("x is odd")

Sample output:
Enter x: 13 x is odd

2.1.6 Chained Conditionals
Some of the programs require more than one possibility to be checked for
executing a set of statements. That means, we may have more than one branch.
This is solved with the help of chained conditionals. The syntax and flowchart is
given below –

The conditions are checked one by one sequentially. If any condition is satisfied,
the respective statement block will be executed and further conditions are not
checked. Note that, the last else block is not necessary always.

if condition:

Statement block -1

else:

Statement block -2

Cond1 Cond2

Condn

if condition1:

Statement Block-1

elif condition2:

Statement Block-2

|

|

|

|

elif condition_n:

Statement Block-n

else:

Statement Block-(n+1)

Statement

Block-(n+1)

Statement

Block-n

Statement

Block-2
Statement

Block-1

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 6

Example: marks=float(input("Enter marks:"))

 if marks >= 80:

print("First Class with Distinction")

 elif marks >= 60 and marks < 80:

print("First Class")

elif marks >= 50 and marks < 60:

 print("Second Class")

elif marks >= 35 and marks < 50:

 print("Third Class")

else:

print("Fail")

Sample Output:
Enter marks: 78
 First Class

2.1.7 Nested Conditionals
The conditional statements can be nested. That is, one set of conditional
statements can be nested inside the other. It can be done in multiple ways
depending on programmer’s requirements. Examples are given below –

Ex1. marks=float(input("Enter marks:")) if marks>=60:

if marks<70:

print("First Class") else:

print("Distinction")

Sample Output:
Enter marks:68 First Class

Here, the outer condition marks>=60 is checked first. If it is true, then there are

two branches for the inner conditional. If the outer condition is false, the above code
does nothing.

Ex2. gender=input("Enter gender:")

 age=int(input("Enter age:"))

if gender == "M" : if age >= 21:

print("Boy, Eligible for Marriage")

 else:

print("Boy, Not Eligible for Marriage")

 elif gender == "F":

if age >= 18:

print("Girl, Eligible for Marriage")

else:

print("Girl, Not Eligible for Marriage")

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 7

Sample Output:
Enter gender: F Enter age: 17
Girl, Not Eligible for Marriage

NOTE: Nested conditionals make the code difficult to read, even though there are
proper indentations. Hence, it is advised to use logical operators like and to simplify
the nested conditionals. For example, the outer and inner conditions in Ex1 above
can be joined as -

if marks>=60 and marks<70: #do something

2.1.8 Catching Exceptions using try and except

As discussed in Section 1.1.11, there is a chance of runtime error while doing some
program. One of the possible reasons is wrong input. For example, consider the
following code segment –

a=int(input("Enter a:"))

b=int(input("Enter b:")) c=a/b

print(c)

When you run the above code, one of the possible situations would be –
Enter a:12 Enter b:0

Traceback (most recent call last):

File "C:\Users\Manojkumar\Python\Python39\p1.py",

line 154, in <module>

c=a/b

ZeroDivisionError: division by zero

For the end-user, such type of system-generated error messages is difficult to
handle. So the code which is prone to runtime error must be executed conditionally
within try block. The try block contains the statements involving suspicious code
and the except block contains the possible remedy (or instructions to user informing
what went wrong and what could be the way to get out of it). If something goes
wrong with the statements inside try block, the except block will be executed.
Otherwise, the except-block will be skipped. Consider the example –

a=int(input("Enter a:"))

b=int(input("Enter b:")) try:

c=a/b print(c)

except:

print("Division by zero is not possible")

Output:
Enter a:12 Enter b:0

Division by zero is not possible

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 9

Handling an exception using try is called as catching an exception. In general,
catching an exception gives the programmer to fix the probable
problem, or to try again or at least to end the program gracefully.

2.1.9 Recursion

It is legal for one function to call another; it is also legal for a function to call itself. It
may not be obvious why that is a good thing, but it turns out to be one of the most
magical things a program can do. For example, look at the following function:

def countdown(n):

if n <= 0:

print('Blastoff!')

else:

print(n)

countdown(n-1)

If n is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs n and then
calls a function named countdown—itself—passing n-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

The execution of countdown begins with n=3, and since n is greater than 0, it outputs
the value 3, and then calls itself...

The execution of countdown begins with n=2, and since n is greater than 0, it
outputs the value 2, and then calls itself...

The execution of countdown begins with n=1, and since n is greater
than 0, it outputs the value 1, and then calls itself...

The execution of countdown begins with n=0, and since n is
not greater than 0, it outputs the word, “Blastoff!” and then
returns.

The countdown that got n=1 returns.
The countdown that got n=2 returns.
The countdown that got n=3 returns.
And then you’re back in __main__. So, the total output looks like this:
3

2

1

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 9

Blastoff!

A function that calls itself is recursive; the process of executing it is called recursion.
As another example, we can write a function that prints a string n times.

def print_n(s, n):

if n <= 0:

return

print(s)

print_n(s, n-1)

Figure 2.1: Stack Diagram of Recursion

If n <= 0 the return statement exits the function. The flow of execution immediately
returns to the caller, and the remaining lines of the function don’t run.

The rest of the function is similar to countdown: it displays s and then calls itself to
displays n - 1 additional times. So the number of lines of output is 1 + (n - 1), which
adds upto n.

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion,
so it is good to start early.

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 10

2.2 ITERATION

Iteration is a processing repeating some task. In a real time programming, we require
a set of statements to be repeated certain number of times and/or till a condition is
met. Every programming language provides certain constructs to achieve the
repetition of tasks. In this section, we will discuss various such looping structures.

2.2.2 The while Statement
The while loop has the syntax as below –

Here, while is a keyword. The condition is evaluated first. Till its value remains

true, the statement_1 to statement_n will be executed. When the condition

becomes false, the loop is terminated and statements after the loop will be executed.
Consider an example –

n=1

while n<=5:

print(n) #observe indentation

 n=n+1

print("over")

The output of above code segment would be –
1

2

3

4

5

over

In the above example, a variable n is initialized to 1. Then the condition n<=5 is

being checked. As the condition is true, the block of code containing print statement
(print(n)) and increment statement (n=n+1) are executed. After these two lines,

condition is checked again. The procedure continues till condition becomes false,
that is when n becomes 6. Now, the while-loop is terminated and next statement
after the loop will be executed. Thus, in this example, the loop is iterated for 5 times.

Note that, a variable n is initialized before starting the loop and it is incremented

while condition:

statement_1

statement_2

…………….

statement_n

statements_after_while

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 11

inside the loop. Such a variable that changes its value for every iteration and controls
the total execution of the loop is called as iteration variable or counter variable. If
the count variable is not updated properly within the loop, then the loop may not
terminate and keeps executing infinitely.

2.2.3 Infinite Loops, break and continue
A loop may execute infinite number of times when the condition is never going to
become false. For example,

n=1

while True:

print(n) n=n+1

Here, the condition specified for the loop is the constant True, which will never get

terminated. Sometimes, the condition is given such a way that it will never become
false and hence by restricting the program control to go out of the loop. This situation
may happen either due to wrong condition or due to not updating the counter
variable.

In some situations, we deliberately want to come out of the loop even before the
normal termination of the loop. For this purpose break statement is used. The
following example depicts the usage of break. Here, the values are taken from
keyboard until a negative number is entered. Once the input is found to be negative,
the loop terminates.

while True:

x=int(input("Enter a number:")) if x>= 0:

print("You have entered ",x) else:

print("You have entered a negative number!!")

break #terminates the loop

Sample output:
Enter a number:23 You have entered 23 Enter a number:12

You have entered 12 Enter a number:45 You have entered 45

Enter a number:0 You have entered 0 Enter a number:-2

You have entered a negative number!!

In the above example, we have used the constant True as condition for while-loop,

which will never become false. So, there was a possibility of infinite loop. This has
been avoided by using break statement with a condition. The condition is kept

inside the loop such a way that, if the user input is a negative number, the loop
terminates. This indicates that, the loop may terminate with just one iteration (if user
gives negative number for the very first time) or it may take thousands of iteration (if
user keeps on giving only positive numbers as input). Hence, the number of
iterations here is unpredictable. But, we are making sure that it will not be an infinite-
loop, instead, the user has control on the loop.
Sometimes, programmer would like to move to next iteration by skipping few

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 12

statements in the loop, based on some condition. For this purpose continue
statement is used. For example, we would like to find the sum of 5 even numbers
taken as input from the keyboard. The logic is –

• Read a number from the keyboard

• If that number is odd, without doing anything else, just move to next
iteration for reading another number

• If the number is even, add it to sum and increment the accumulator variable.

• When accumulator crosses 5, stop the program The program for the above

task can be written as –

sum=0 count=0 while True:

x=int(input("Enter a number:"))

if x%2 !=0:

continue

 else:

sum+=x

count+=1

if count==5:

 break

print("Sum= ", sum)

Sample Output:
Enter a number:13

Enter a number:12

Enter a number:4

Enter a number:5

Enter a number:-3

Enter a number:8

Enter a number:7

Enter a number:16

 Enter a number:6

Sum= 46

2.2.4 Definite Loops using for

The while loop iterates till the condition is met and hence, the number of iterations
are usually unknown prior to the loop. Hence, it is sometimes called as indefinite
loop. When we know total number of times the set of statements to be executed,

Python Programming (18EC652) Module 2

Manojkumar S B, Asst Prof, Dept of ECE, BGSIT Page 13

for loop will be used. This is called as a definite loop. The for-loop iterates over a
set of numbers, a set of words, lines in a file etc. The syntax of for-loop would be –

Here, for and in are keywords

list/sequence is a set of elements on which the loop is iterated. That is,

the loop will be executed till there is an element in
list/sequence

statements constitutes body of the loop

Ex: In the below given example, a list names containing three strings has been

created. Then the counter variable x in the for-loop iterates over this list. The variable
x takes the elements in names one by one and the body of the loop is executed.

names=["Rama", "Shyama", "Bhama"] for x in names:

print(x)

The output would be –
Rama Shyama Bhama

NOTE: In Python, list is an important data type. It can take a sequence of elements
of different types. It can take values as a comma separated sequence enclosed
within square brackets. Elements in the list can be extracted using index (just similar
to extracting array elements in C/C++ language). Various operations like indexing,
slicing, merging, addition and deletion of elements etc. can be applied on lists. The
details discussion on Lists will be done in Module 3.

The for loop can be used to print (or extract) all the characters in a string as shown
below –

for i in "Hello": print(i, end=’\t’)

Output:
H e l l o

for var in list/sequence:

statement_1

statement_2

………………

statement_n

statements_after_for

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 14

Python Programming (18EC652) Module 2

When we have a fixed set of numbers to iterate in a for loop, we can use a
function range(). The function range() takes the following format –

range(start, end, steps)

The start and end indicates starting and ending values in the sequence, where

end is excluded in the sequence (That is, sequence is up to end-1). The default

value of start is 0. The argument steps indicates the increment/decrement in the

values of sequence with the default value as 1. Hence, the argument steps is

optional. Let us consider few examples on usage of range() function.

Ex1. Printing the values from 0 to 4 –
for i in range(5): print(i, end= ‘\t’)

Output:
0 1 2 3 4

Here, 0 is the default starting value. The statement range(5) is same as

range(0,5) and range(0,5,1).

Ex2. Printing the values from 5 to 1 –

for i in range(5,0,-1): print(i, end= ‘\t’)

Output:
5 4 3 2 1

The function range(5,0,-1)indicates that the sequence of values are 5 to

0(excluded) in steps of -1 (downwards).

Ex3. Printing only even numbers less than 10 –

for i in range(0,10,2): print(i, end= ‘\t’)

Output:
0 2 4 6 8

2.2.5 Loop Patterns

The while-loop and for-loop are usually used to go through a list of items or the
contents of a file and to check maximum or minimum data value. These loops are
generally constructed by the following procedure –

➢ Initializing one or more variables before the loop starts
➢ Performing some computation on each item in the loop body, possibly

changing the variables in the body of the loop
➢ Looking at the resulting variables when the loop completes

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 15

Python Programming (18EC652) Module 2

The construction of these loop patterns are demonstrated in the following examples.

Counting and Summing Loops: One can use the for loop for counting number of
items in the list as shown –

count = 0

for i in [4, -2, 41, 34, 25]:

count = count + 1

print(“Count:”, count)

Here, the variable count is initialized before the loop. Though the counter variable

i is not being used inside the body of the loop, it controls the number of iterations.

The variable count is incremented in every iteration, and at the end of the loop the

total number of elements in the list is stored in it.

One more loop similar to the above is finding the sum of elements in the list –

total = 0

for x in [4, -2, 41, 34, 25]:

total = total + x

print(“Total:”, total)

Here, the variable total is called as accumulator because in every iteration, it

accumulates the sum of elements. In each iteration, this variable contains running
total of values so far.

NOTE: In practice, both of the counting and summing loops are not necessary,

because there are built-in functions len() and sum() for the same tasks

respectively.

Maximum and Minimum Loops: To find maximum element in the list, the following

code can be used –

big = None

print('Before Loop:', big)

 for x in [12, 0, 21,-3]:

if big is None or x > big :

big = x

print('Iteration Variable:', x, 'Big:', big)

print('Biggest:', big)

Output:
Before Loop: None

Iteration Variable: 12 Big: 12

Iteration Variable: 0 Big: 12

Iteration Variable: 21 Big: 21

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 16

Python Programming (18EC652) Module 2

Iteration Variable: -3 Big: 21

Biggest: 21

Here, we initialize the variable big to None. It is a special constant indicating empty.

Hence, we cannot use relational operator == while comparing it with big. Instead,

the is operator must be used. In every iteration, the counter variable x is compared

with previous value of big. If x > big, then x is assigned to big.

Similarly, one can have a loop for finding smallest of elements in the list as given
below –

small = None

print('Before Loop:', small)

for x in [12, 0, 21,-3]:

if small is None or x < small :

small = x

print('Iteration Variable:', x, 'Small:', small)

print('Smallest:', small)

Output:
Before Loop: None

Iteration Variable: 12 Small: 12

Iteration Variable: 0 Small: 0

Iteration Variable: 21 Small: 0

Iteration Variable: -3 Small: -3

Smallest: -3

NOTE: In Python, there are built-in functions max() and min() to compute

maximum and minimum values among. Hence, the above two loops need not be
written by the programmer explicitly. The inbuilt function min() has the following

code in Python –
def min(values):

smallest = None

for value in values:

if smallest is None or value < smallest:

smallest = value

return smallest

2.3 STRINGS
A string is a sequence of characters, enclosed either within a pair of single quotes
or double quotes. Each character of a string corresponds to an index number,
starting with zero as shown below –

S= “Hello World”

character H e l l o w o r l d

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 17

Python Programming (18EC652) Module 2

index 0 1 2 3 4 5 6 7 8 9 10

The characters of a string can be accessed using index enclosed within square
brackets. For example,

>>> word1="Hello"

>>> word2='hi'

>>> x=word1[1] #2nd character of word1 is extracted

>>> print(x) e

>>> y=word2[0] #1st character of word1 is extracted

>>> print(y) h

Python supports negative indexing of string starting from the end of the string
as shown below –

S= “Hello World”

character H e l l o w o r l D

Negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

The characters can be extracted using negative index also. For example,

>>> var=“Hello”

>>> print(var[-1]) o

>>> print(var[-4]) e

Whenever the string is too big to remember last positive index, one can use negative
index to extract characters at the end of string.

2.3.2 Getting Length of a String using len()

The len() function can be used to get length of a string.
>>> var="Hello"

>>> ln=len(var)

>>> print(ln)

5

The index for string varies from 0 to length-1. Trying to use the index value
beyond this range generates error.

>>> var="Hello"

>>> ln=len(var)

>>> ch=var[ln]

IndexError: string index out of range

2.3.3 Traversal through String with a Loop
Extracting every character of a string one at a time and then performing some
action on that character is known as traversal. A string can be traversed either using
while loop or using for loop in different ways. Few of such methods is shown here –

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 18

Python Programming (18EC652) Module 2

• Using for loop:
st="Hello" for i in st:

print(i, end='\t')

Output:

H e l l o

In the above example, the for loop is iterated from first to last character of the
string st. That is, in every iteration, the counter variable i takes the values as H,

e, l, l and o. The loop terminates when no character is left in st.

• Using while loop:
st="Hello" i=0

while i<len(st):

print(st[i], end=‘\t’) i+=1

Output:
H e l l o

In this example, the variable i is initialized to 0 and it is iterated till the length of

the string. In every iteration, the value of i is incremented by 1 and the character

in a string is extracted using i as index.

2.3.4 String Slices

A segment or a portion of a string is called as slice. Only a required number of
characters can be extracted from a string using colon (:) symbol. The basic syntax
for slicing a string would be –

st[i:j:k]

This will extract character from ith character of st till (j-1)th character in steps of k.

If first index i is not present, it means that slice should start from the beginning of

the string. If the second index j is not mentioned, it indicates the slice should be till

the end of the string. The third parameter k, also known as stride, is used to

indicate number of steps to be incremented after extracting first character. The
default value of stride is 1.

Consider following examples along with their outputs to understand string slicing.

st="Hello World" #refer this string for all examples

➢ print("st[:] is", st[:]) #output

Hello World

As both index values are not given, it assumed to be a full string.

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 19

Python Programming (18EC652) Module 2

➢ print("st[0:5] is ", st[0:5]) #output is

Hello

Starting from 0th index to 4th index (5 is exclusive), characters will be printed.

➢ print("st[0:5:1] is", st[0:5:1]) #output is

 Hello

This code also prints characters from 0th to 4th index in the steps of 1.

Comparing this example with previous example, we can make out that when

the stride value is 1, it is optional to mention.

➢ print("st[3:8] is ", st[3:8]) #output is

 lo Wo

Starting from 3rd index to 7th index (8 is exclusive), characters will be printed.

➢ print("st[7:] is ", st[7:]) #output is

orld

Starting from 7th index to till the end of string, characters will be printed.

➢ print(st[::2]) #outputs

HloWrd

This example uses stride value as 2. So, starting from first character, every

alternative character (char+2) will be printed.

➢ print("st[4:4] is ", st[4:4]) #gives empty string

Here, st[4:4] indicates, slicing should start from 4th character and end with

(4- 1)=3rd character, which is not possible. Hence the output would be an

empty string.

➢ print(st[3:8:2]) #output is

l o

Starting from 3rd character, till 7th character, every alternative index is

considered.

➢ print(st[1:8:3]) #output is

eoo

Starting from index 1, till 7th index, every 3rd character is extracted here.

➢ print(st[-4:-1]) #output is

orl

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 20

Python Programming (18EC652) Module 2

Refer the diagram of negative indexing given earlier. Excluding the -1st

character, all characters at the indices -4, -3 and -2 will be displayed. Observe

the role of stride with default value 1 here. That is, it is computed as -4+1 =-

3, -3+1=-2 etc.

➢ print(st[-1:]) #output is

d

Here, starting index is -1, ending index is not mentioned (means, it takes the

index 10) and the stride is default value 1. So, we are trying to print characters

from -1 (which is the last character of negative indexing) till 10th character

(which is also the last character in positive indexing) in incremental order of

1. Hence, we will get only last character as output.

➢ print(st[:-1]) #output is

Hello Worl

Here, starting index is default value 0 and ending is -1 (corresponds to last

character in negative indexing). But, in slicing, as last index is excluded

always, -1st character is omitted and considered only up to -2nd character.

➢ print(st[::]) #outputs

Hello World

Here, two colons have used as if stride will be present. But, as we haven’t

mentioned stride its default value 1 is assumed. Hence this will be a full string.

➢ print(st[::-1]) #outputs

dlroW olleH

This example shows the power of slicing in Python. Just with proper slicing,
we could able to reverse the string. Here, the meaning is a full string to be
extracted in the order of -1. Hence, the string is printed in the reverse order.

➢ print(st[::-2]) #output is

drWolH

Here, the string is printed in the reverse order in steps of -2. That is, every
alternative character in the reverse order is printed. Compare this with
example (6) given above.

By the above set of examples, one can understand the power of string slicing and
of Python script. The slicing is a powerful tool of Python which makes many task
simple pertaining to data types like strings, Lists, Tuple, Dictionary etc. (Other types
will be discussed in later Modules)

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 21

Python Programming (18EC652) Module 2

2.3.5 Strings are Immutable

The objects of string class are immutable. That is, once the strings are created (or
initialized), they cannot be modified. No character in the string can be
edited/deleted/added. Instead, one can create a new string using an existing string
by imposing any modification required.

Try to attempt following assignment –

>>> st= “Hello World”

>>> st[3]='t'

TypeError: 'str' object does not support item assignment

Here, we are trying to change the 4th character (index 3 means, 4th character as the
first index is 0) to t. The error message clearly states that an assignment of new
item (a string) is not possible on string object. So, to achieve our requirement, we
can create a new string using slices of existing string as below –

>>> st= “Hello World”

>>> st1= st[:3]+ 't' + st[4:]

>>> print(st1)

Helto World #l is replaced by t in new

string st1

2.3.6 Looping and Counting
Using loops on strings, we can count the frequency of occurrence of a character
within another string. The following program demonstrates such a pattern on
computation called as a counter. Initially, we accept one string and one character
(single letter). Our aim to find the total number of times the character has appeared
in string. A variable count is initialized to zero, and incremented each time a
character is found. The program is given below –

def countChar(st,ch):

 count=0

for i in st:

if i==ch:

count+=1 return count

st=input("Enter a string:")

ch=input("Enter a character to be counted:")

c=countChar(st,ch)

print("{0} appeared {1} times in {2}".format(ch,c,st))

Sample Output:
Enter a string: hello how are you?
Enter a character to be counted: h

h appeared 2 times in hello how are you?

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 22

Python Programming (18EC652) Module 2

2.3.7 The in Operator
The in operator of Python is a Boolean operator which takes two string operands. It
returns True, if the first operand appears in second operand, otherwise returns False.
For example,

>>> 'el' in 'hello' #el is found in hello True

>>> 'x' in 'hello' #x is not found in hello False

2.3.8 String Comparison
Basic comparison operators like < (less than), > (greater than), == (equals) etc. can
be applied on string objects. Such comparison results in a Boolean value True or
False. Internally, such comparison happens using ASCII codes of respective
characters. Consider following examples –

Ex1. st= “hello”

if st== ‘hello’:

print(‘same’)

Output is same. As the value contained in st and hello both are same, the

equality results in True.

Ex2. st= “hello”

if st<= ‘Hello’:

print(‘lesser’)

else:

print(‘greater’)

Output is greater. The ASCII value of h is greater than ASCII value of H.

Hence, hello

is greater than Hello.

NOTE: A programmer must know ASCII values of some of the basic characters.
Here are few –

A – Z : 65 – 90
a – z : 97 – 122
0 – 9 : 48 – 57
Space 32

Enter Key 13

2.3.9 String Methods
String is basically a class in Python. When we create a string in our program, an
object of that class will be created. A class is a collection of member variables and
member methods (or functions). When we create an object of a particular class, the

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 23

Python Programming (18EC652) Module 2

object can use all the members (both variables and methods) of that class. Python
provides a rich set of built-in classes for various purposes. Each class is enriched
with a useful set of utility functions and variables that can be used by a Programmer.
A programmer can create a class based on his/her requirement, which are known
as user-defined classes.

The built-in set of members of any class can be accessed using the dot operator as
shown–

objName.memberMethod(arguments)

The dot operator always binds the member name with the respective object name.
This is very essential because, there is a chance that more than one class has
members with same name. To avoid that conflict, almost all Object oriented
languages have been designed with this common syntax of using dot operator.
(Detailed discussion on classes and objects will be done in later Modules.)

Python provides a function (or method) dir to list all the variables and methods of a
particular class object. Observe the following statements –

>>> s="hello" #string object is created with the name s

>>> type(s) #checking type of s

<class ‘str’> #s is object of type class str

>>> dir(s) #display all methods and variables of

object s

[' add ', ' class ', ' contains ', ' delattr ', '

dir ', ' doc ', ' eq ', ' format ', ' ge ', '

getattribute ', ' getitem ', ' getnewargs ', ' gt ', '

hash ', ' init ', ' init_subclass ', ' iter ', ' le

', ' len ', ' lt ',' mod ', ' mul ', ' ne ',

' new ', ' reduce ', ' reduce_ex ', ' repr ', ' rmod

', ' rmul ', ' setattr ', ' sizeof ', ' str ', '

subclasshook ', 'capitalize', 'casefold', 'center', 'count',

'encode', 'endswith', 'expandtabs', 'find', 'format',

'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal',

'isdigit', 'isidentifier', 'islower',

'isnumeric','isprintable', 'isspace', 'istitle', 'isupper',

'join', 'ljust','lower', 'lstrip', 'maketrans', 'partition',

'replace', 'rfind',

'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split',

'splitlines', 'startswith', 'strip', 'swapcase', 'title',

'translate', 'upper', 'zfill']

Students need not remember the above list !!

Note that, the above set of variables and methods are common for any object

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 24

Python Programming (18EC652) Module 2

of string class that we create. Each built-in method has a predefined set of arguments
and return type. To know the usage, working and behavior of any built-in method,
one can use the command help. For example, if we would like to know what is the
purpose of islower() function (refer above list to check its existence!!), how it

behaves etc, we can use the statement –

>>> help(str.islower)

Help on method_descriptor:

islower(...)

S.islower() -> bool

Return True if all cased characters in S are

lowercase and there is at least one cased character in S,

False otherwise.

This is built-in help-service provided by Python. Observe the

className.memberName

format while using help.

The methods are usually called using the object name. This is known as method
invocation. We say that a method is invoked using an object.

Now, we will discuss some of the important methods of string class.

• capitalize(s) : This function takes one string argument s and returns a capitalized
version of that string. That is, the first character of s is converted to upper case,
and all other characters to lowercase. Observe the examples given below –

Ex1. >>> s="hello"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello #1st character is changed to

uppercase

Ex2. >>> s="hello World"

>>> s1=str.capitalize(s)

>>> print(s1)

Hello world

Observe in Ex2 that the first character is converted to uppercase, and an in-
between uppercase letter W of the original string is converted to lowercase.

Manojkumar S B, Asst Prof, Dept of ECE,
BGSIT

Page 25

Python Programming (18EC652) Module II

• s.upper(): This function returns a copy of a string s to uppercase. As strings are
immutable, the original string s will remain same.

>>> st= “hello”

>>> st1=st.upper()

>>> print(st1)

'HELLO'

>>> print(st) #no change in original string 'hello'

• s.lower(): This method is used to convert a string s to lowercase. It returns a
copy of original string after conversion, and original string is intact.

>>> st='HELLO'

>>> st1=st.lower()

>>> print(st1) hello

>>> print(st) #no change in original string

HELLO

• s.find(s1) : The find() function is used to search for a substring s1 in the string

s. If found, the index position of first occurrence of s1 in s, is returned. If s1 is not
found in s, then -1 is returned.

>>> st='hello'

>>> i=st.find('l')

>>> print(i) #output is 2

>>> i=st.find('lo')

>>> print(i) #output is 3

>>> print(st.find(‘x’)) #output is -1

The find() function can take one more form with two additional arguments

viz. start and end positions for search.

>>> st="calender of Feb. cal of march"

>>> i= st.find(‘cal’)

>>> print(i) #output is 0

Here, the substring ‘cal’ is found in the very first position of st, hence the

result is 0.

>>> i=st.find('cal',10,20)

>>> print(i) #output is 17

Here, the substring cal is searched in the string st between 10th and 20th

position and hence the result is 17.

>>> i=st.find('cal',10,15)

>>> print(i) #ouput is -1

Manojkumar S B, Asst Prof, Dept of ECE,
BGSIT

Page 26

Python Programming (18EC652) Module II

In this example, the substring 'cal' has not appeared between 10th and 15th

character of st. Hence, the result is -1.

• s.strip(): Returns a copy of string s by removing leading and trailing white
spaces.

>>> st=" hello world "

>>> st1 = st.strip()

>>> print(st1)

hello world

The strip() function can be used with an argument chars, so that specified
chars are removed from beginning or ending of s as shown below –

>>> st="###Hello##"

>>> st1=st.strip('#')

>>> print(st1) #all hash symbols are removed

Hello

We can give more than one character for removal as shown below –

>>> st="Hello world"

>>> st.strip("Hld") ello wor

• S.startswith(prefix, start, end): This function has 3 arguments of which start
and end are option. This function returns True if S starts with the specified prefix,
False otherwise.

>>> st="hello world"

>>> st.startswith("he") #returns True

When start argument is provided, the search begins from that position and
returns True or False based on search result.

>>> st="hello world"

>>> st.startswith("w",6) #True because w is at 6th

position

When both start and end arguments are given, search begins at start and ends
at end.

>>> st="xyz abc pqr ab mn gh“

>>> st.startswith("pqr ab mn",8,12) #returns False

>>> st.startswith("pqr ab mn",8,18) #returns True

The startswith() function requires case of the alphabet to match. So, when

we are not sure about the case of the argument, we can convert it to either upper
case or lowercase and then use startswith() function as below –

Manojkumar S B, Asst Prof, Dept of ECE,
BGSIT

Page 27

Python Programming (18EC652) Module II

>>> st="Hello"

>>> st.startswith("he") #returns False

>>> st.lower().startswith("he") #returns True

• S.count(s1, start, end): The count() function takes three arguments – string,

starting position and ending position. This function returns the number of non-
overlapping occurrences of substring s1 in string S in the range of start and end.

>>> st="hello how are you? how about you?"

>>> st.count('h') #output is 3

>>> st.count(‘how’) #output is 2

>>> st.count(‘how’,3,10) #output is 1 because of range

given

There are many more built-in methods for string class. Students are advised
to explore more for further study.

2.3.10 Parsing Strings
Sometimes, we may want to search for a substring matching certain criteria. For
example, finding domain names from email-Ids in the list of messages is a useful
task in some projects. Consider a string below and we are interested in extracting
only the domain name.

“From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018”

Now, our aim is to extract only ieee.org, which is the domain name. We can think of
logic as–

o Identify the position of @, because all domain names in email IDs will be
after the symbol @

o Identify a white space which appears after @ symbol, because that
will be the end of domain name.

o Extract the substring between @ and white-space.

The concept of string slicing and find() function will be useful here.Consider the
code given below –

st="From chetanahegde@ieee.org Wed Feb 21 09:14:16 2018"

atpos=st.find('@') #finds the position of @

print('Position of @ is', atpos)

spacePos=st.find(‘ ', atpos) #position of white-space

after @ print('Position of space after @ is', spacePos)

mailto:chetanahegde@ieee.org
mailto:chetanahegde@ieee.org

Manojkumar S B, Asst Prof, Dept of ECE,
BGSIT

Page 28

Python Programming (18EC652) Module II

host=st[atpos+1:spacePos] #slicing from @ till white-

space print(host)

Execute above program to get the output as ieee.org. One can apply this logic in a
loop, when our string contains series of email IDs, and we may want to extract all
those mail IDs.

2.3.11 Format Operator
The format operator, % allows us to construct strings, replacing parts of the strings
with the data stored in variables. The first operand is the format string, which
contains one or more format sequences that specify how the second operand is
formatted. The result is a string.

>>> sum=20

>>> '%d' %sum

‘20’ #string ‘20’, but not integer 20

Note that, when applied on both integer operands, the % symbol acts as a modulus
operator. When the first operand is a string, then it is a format operator. Consider
few examples illustrating usage of format operator.

Ex1. >>> "The sum value %d is originally integer"%sum 'The sum

value 20 is originally integer‘

Ex2. >>> '%d %f %s'%(3,0.5,'hello')

'3 0.500000 hello‘

Ex3. >>> '%d %g %s'%(3,0.5,'hello')

'3 0.5 hello‘

Ex4. >>> '%d'% 'hello'

TypeError: %d format: a number is required, not str

Ex5. >>> '%d %d %d'%(2,5)

TypeError: not enough arguments for format string

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 1

MODULE – 3

LISTS AND DICTIONARIES

3.1 LISTS

A list is an ordered sequence of values. It is a data structure in Python.

The values inside the lists can be of any type (like integer, float, strings,

lists, tuples, dictionaries etc) and are called as elements or items. The

elements of lists are enclosed within square brackets. For example,

ls1=[10,-4, 25, 13]

ls2=[“Tiger”, “Lion”, “Cheetah”]

Here, ls1 is a list containing four integers, and ls2 is a list containing three

strings. A list need not contain data of same type. We can have mixed type

of elements in list. For example,

ls3=[3.5, ‘Tiger’, 10, [3,4]]

Here, ls3 contains a float, a string, an integer and a list. This illustrates

that a list can be nested as well.

An empty list can be created any of the following ways –

>>> ls =[]

>>> type(ls)

<class 'list'>

or

>>> ls =list()

>>> type(ls)

<class 'list'>

In fact, list() is the name of a method (special type of method called as

constructor – which will be discussed in Module 4) of the class list. Hence,

a new list can be created using this function by passing arguments to it as

shown below –

>>> ls2=list([3,4,1])

>>> print(ls2)

[3, 4, 1]

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 2

3.1.1 List Operations

Python allows to use operators + and * on lists. The operator + uses two

list objects and returns concatenation of those two lists. Whereas *

operator take one list object and one integer value, say n, and returns a

list by repeating itself for n times.

>>> ls1=[1,2,3]
 >>> ls2=[5,6,7]
 >>> print(ls1+ls2) #concatenation using +
 [1, 2, 3, 5, 6, 7]

>>> ls1=[1,2,3]
>>> print(ls1*3) #repetition using *
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> [0]*4 #repetition using *
 [0, 0, 0, 0]

3.1.2 Traversing a List

A list can be traversed using for loop. If we need to use each element in
the list, we can use the for loop and in operator as below –

 >>> ls=[34, 'hi', [2,3],-5]
>>> for item in ls:

print(item)

 34
 hi
 Hello
 -5

List elements can be accessed with the combination of range() and len()
functions as well –

ls=[1,2,3,4]
for i in range(len(ls)):
ls[i]=ls[i]**2

print(ls) #output is [1, 4, 9, 16]

Here, we wanted to do modification in the elements of list. Hence,
referring indices is suitable than referring elements directly. The len()
returns total number of elements in the list (here it is 4). Then range()
function makes the loop to range from 0 to 3 (i.e. 4-1). Then, for every
index, we are updating the list elements (replacing original value by its

square).

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 3

3.1.3 List Slices

Similar to strings, the slicing can be applied on lists as well. Consider a

list t given below, and a series of examples following based on this object.

t=['a','b','c','d','e']

• Extracting full list without using any index, but only a slicing operator
–

>>> print(t[:])
['a', 'b', 'c', 'd', 'e']

• Extracting elements from 2nd position –
>>> print(t[1:])

['b', 'c', 'd', 'e']

• Extracting first three elements –
>>> print(t[:3])

['a', 'b', 'c']

• Selecting some middle elements –
>>> print(t[2:4])

['c', 'd']

• Using negative indexing –
>>> print(t[:-2])

['a', 'b', 'c']

• Reversing a list using negative value for stride –

>>> print(t[::-1])
['e', 'd', 'c', 'b', 'a']

• Modifying (reassignment) only required set of values –

>>> t[1:3]=['p','q']
>>> print(t)

['a', 'p', 'q', 'd', 'e']

Thus, slicing can make many tasks simple.

3.1.4 List Methods
There are several built-in methods in list class for various purposes.
Here, we will discuss some of them.

• append(): This method is used to add a new element at the end of a list.
>>> ls=[1,2,3]
>>> ls.append(‘hi’)

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 4

>>> ls.append(10)
>>> print(ls)

[1, 2, 3, ‘hi’, 10]

• extend(): This method takes a list as an argument and all the
elements in this list are added at the end of invoking list.

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)
>>> print(ls2)

[5, 6, 1, 2, 3]

Now, in the above example, the list ls1 is unaltered.

• sort(): This method is used to sort the contents of the list. By default,
the function will sort the items in ascending order.

>>> ls=[3,10,5, 16,-2]
>>> ls.sort()
>>> print(ls)

[-2, 3, 5, 10, 16]

When we want a list to be sorted in descending order, we need to set
the argument as shown –

>>> ls.sort(reverse=True)
>>> print(ls)
[16, 10, 5, 3, -2]

• reverse(): This method can be used to reverse the given list.
>>> ls=[4,3,1,6]
>>> ls.reverse()
>>> print(ls)

[6, 1, 3, 4]

• count(): This method is used to count number of occurrences of a
particular value within list.

>>> ls=[1,2,5,2,1,3,2,10]
>>> ls.count(2)

3 #the item 2 has appeared 3 tiles
in ls

• clear(): This method removes all the elements in the list and makes
the list empty.

>>> ls=[1,2,3]
>>> ls.clear()
>>> print(ls)

[]

• insert(): Used to insert a value before a specified index of the list.

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 5

>>> ls=[3,5,10]
>>> ls.insert(1,"hi")
>>> print(ls)

[3, 'hi', 5, 10]

• index(): This method is used to get the index position of a particular
value in the list.

>>> ls=[4, 2, 10, 5, 3, 2, 6]
>>> ls.index(2)

1
Here, the number 2 is found at the index position 1. Note that, this
function will give index of only the first occurrence of a specified value.
The same function can be used with two more arguments start and

end to specify a range within which the search should take place.

>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]
>>> ls.index(2)

2
>>> ls.index(2,3,7)

6

If the value is not present in the list, it throws ValueError.
>>> ls=[15, 4, 2, 10, 5, 3, 2, 6]
>>> ls.index(53)

ValueError: 53 is not in list

Few important points about List Methods:

1. There is a difference between append() and extend() methods. The

former adds the argument as it is, whereas the latter enhances the
existing list. To understand this, observe the following example –

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.append(ls1)
>>> print(ls2)

[5, 6, [1, 2, 3]]

Here, the argument ls1 for the append() function is treated as one
item, and made as an inner list to ls2. On the other hand, if we replace
append() by extend() then the result would be –

>>> ls1=[1,2,3]
>>> ls2=[5,6]
>>> ls2.extend(ls1)
>>> print(ls2)
[5, 6, 1, 2, 3]

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 6

2. The sort() function can be applied only when the list contains
elements of compatible types. But, if a list is a mix non-compatible

types like integers and string, the comparison cannot be done. Hence,
Python will throw TypeError. For example,

>>> ls=[34, 'hi', -5]
>>> ls.sort()
TypeError: '<' not supported between instances of 'str' and
'int'

Similarly, when a list contains integers and sub-list, it will be an error.

>>> ls=[34,[2,3],5]
>>> ls.sort()
TypeError: '<' not supported between instances of 'list'
and 'int'

Integers and floats are compatible and relational operations can be
performed on them. Hence, we can sort a list containing such items.

>>> ls=[3, 4.5, 2]
>>> ls.sort()
>>> print(ls)

[2, 3, 4.5]

3. The sort() function uses one important argument keys. When a list is
containing tuples, it will be useful. We will discuss tuples later in this

Module.

4. Most of the list methods like append(), extend(), sort(), reverse() etc.
modify the list object internally and return None.

>>> ls=[2,3]
>>> ls1=ls.append(5)
>>> print(ls)

[2,3,5]
>>>

 print (ls1)
None

3.1.5 Deleting Elements

Elements can be deleted from a list in different ways. Python provides
few built-in methods for removing elements as given below –

• pop(): This method deletes the last element in the list, by default.

>>> ls=[3,6,-2,8,10]
>>> x=ls.pop() #10 is removed from list and stored in x
>>> print(ls)
[3, 6, -2, 8]

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 7

>>>print(x)
10

When an element at a particular index position has to be deleted, then
we can give that position as argument to pop() function.

>>> t = ['a', 'b', 'c']
>>> x = t.pop(1) #item at index 1 is popped
>>> print(t)

['a', 'c']
>>> print(x)
 b

• remove(): When we don’t know the index, but know the value to
be removed, then this function can be used.

>>> ls=[5,8, -12,34,2]
>>> ls.remove(34)
>>> print(ls)

[5, 8, -12, 2]

Note that, this function will remove only the first occurrence of

the specified value, but not all occurrences.

>>> ls=[5,8, -12, 34, 2, 6, 34]
>>> ls.remove(34)
>>> print(ls)

[5, 8, -12, 2, 6, 34]

Unlike pop() function, the remove() function will not return the
value that has been deleted.

• del: This is an operator to be used when more than one item to

be deleted at a time. Here also, we will not get the items deleted.

>>> ls=[3,6,-2,8,1]
>>> del ls[2] #item at index 2 is deleted
>>> print(ls)

[3, 6, 8, 1]

>>> ls=[3,6,-2,8,1]
>>> del ls[1:4] #deleting all elements from index 1 to 3
>>> print(ls)

[3, 1]

Deleting all odd indexed elements of a list –

>>> t=[‘a’, ‘b’, ‘c’, ‘d’, ‘e’]
>>> del t[1::2]
>>> print(t)

['a', 'c', 'e']

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 8

3.1.6 Lists are Mutable

The elements in the list can be accessed using a numeric index within
square-brackets. It is similar to extracting characters in a string.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[1])

hi
>>> print(ls[2])

[2, 3]

Observe here that, the inner list is treated as a single element by outer
list. If we would like to access the elements within inner list, we need to
use double-indexing as shown below –

>>> print(ls[2][0])
2

>>> print(ls[2][1])
3

Note that, the indexing for inner-list again starts from 0. Thus, when we
are using double- indexing, the first index indicates position of inner list

inside outer list, and the second index means the position particular
value within inner list.

Unlike strings, lists are mutable. That is, using indexing, we can modify
any value within list. In the following example, the 3rd element (i.e. index
is 2) is being modified –

>>> ls=[34, 'hi', [2,3],-5]
>>> ls[2]='Hello'
>>> print(ls)

[34, 'hi', 'Hello', -5]

The list can be thought of as a relationship between indices and
elements. This relationship is called as a mapping. That is, each index
maps to one of the elements in a list.

The index for extracting list elements has following properties –

• Any integer expression can be an index.
>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[2*1])

'Hello'
• Attempt to access a non-existing index will throw and IndexError.

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[4])
IndexError: list index out of range

• A negative indexing counts from backwards.

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 9

>>> ls=[34, 'hi', [2,3],-5]
>>> print(ls[-1])

-5
>>> print(ls[-3])

hi

The in operator applied on lists will results in a Boolean value.

>>> ls=[34, 'hi', [2,3],-5]
>>> 34 in ls

True
>>> -2 in ls

False

3.1.7 Lists and Functions

The utility functions like max(), min(), sum(), len() etc. can be used on
lists. Hence most of the operations will be easy without the usage of loops.

>>> ls=[3,12,5,26, 32,1,4]
>>> max(ls) # prints 32
>>> min(ls) # prints 1
>>> sum(ls) # prints 83
>>> len(ls) # prints 7

>>> avg=sum(ls)/len(ls)
>>> print(avg)

11.857142857142858

When we need to read the data from the user and to compute sum and

average of those numbers, we can write the code as below –

ls= list()
while (True):

x= input('Enter a number: ')
if x== 'done':

break

x= float(x)
ls.append(x)

average = sum(ls) / len(ls)
print('Average:', average)

In the above program, we initially create an empty list. Then, we are
taking an infinite while- loop. As every input from the keyboard will be in

the form of a string, we need to convert x into float type and then append
it to a list. When the keyboard input is a string ‘done’, then the loop is

going to get terminated. After the loop, we will find the average of those
numbers with the help of built-in functions sum() and len().

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 10

3.1.8 Lists and Strings

Though both lists and strings are sequences, they are not same. In fact,
a list of characters is not same as string. To convert a string into a list,
we use a method list() as below –

>>> s="hello"

>>> ls=list(s)

>>> print(ls)

['h', 'e', 'l', 'l', 'o']

The method list() breaks a string into individual letters and constructs a
list. If we want a list of words from a sentence, we can use the following
code –

>>> s="Hello how are you?"

>>> ls=s.split()

>>> print(ls)

['Hello', 'how', 'are', 'you?']

Note that, when no argument is provided, the split() function takes the

delimiter as white space. If we need a specific delimiter for splitting the
lines, we can use as shown in following example –

>>> dt="20/03/2018"

>>> ls=dt.split('/')

>>> print(ls)

['20', '03', '2018']

There is a method join() which behaves opposite to split() function. It
takes a list of strings as argument, and joins all the strings into a single

string based on the delimiter provided. For example –

>>> ls=["Hello", "how", "are", "you"]

>>> d=' '

>>>

d.join(ls)

'Hello how

are you'

Here, we have taken delimiter d as white space. Apart from space,
anything can be taken as delimiter. When we don’t need any delimiter,
use empty string as delimiter.

3.1.9 Parsing Lines

In many situations, we would like to read a file and extract only the lines
containing required pattern. This is known as parsing. As an illustration,
let us assume that there is a log file containing details of email

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 11

communication between employees of an organization. For all received
mails, the file contains lines as –

From ManojkumarSB@bgsit.ac.in Sat Jul 03 09:14:16 2021

From sbmanojkumar@bgsit.ac.in Sun Jul 4 06:12:51 2021

………………

Apart from such lines, the log file also contains mail-contents, to-whom

the mail has been sent etc. Now, if we are interested in extracting only
the days of incoming mails, then we can go for parsing. That is, we are
interested in knowing on which of the days, the mails have been received.

The code would be –

fhand = open(‘logFile.txt’)

for line in fhand:

line = line.rstrip()

if not line.startswith('From '):

continue

words =

line.split()

print(words[2])

Obviously, all received mails starts from the word From. Hence, we
search for only such lines and then split them into words. Observe that,

the first word in the line would be From, second word would be email-ID
and the 3rd word would be day of a week. Hence, we will extract words[2]

which is 3rd word.

3.1.10 Objects and Values
Whenever we assign two variables with same value, the question arises
– whether both the variables are referring to same object, or to different
objects. This is important aspect to know, because in Python everything

is a class object. There is nothing like elementary data type.

Consider a situation –

a= “hi”
b= “hi”

Now, the question is whether both a and b refer to the same string.
There are two possible states –

In the first situation, a and b are two different objects, but containing
same value. The modification in one object is nothing to do with the
other. Whereas, in the second case, both a and b are referring to the
same object. That is, a is an alias name for b and vice- versa. In other

 hi

 hi

hi

mailto:ManojkumarSB@bgsit.ac.in
mailto:%20sbmanojkumar@bgsit.ac.in
mailto:%20sbmanojkumar@bgsit.ac.in

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 12

words, these two are referring to same memory location.

To check whether two variables are referring to same object or not, we can

use is operator.

>>> a= “hi”

>>> b= “hi”

>>> a is b #result is True

>>> a==b #result is True

When two variables are referring to same object, they are called as
identical objects. When two variables are referring to different objects,

but contain a same value, they are known as equivalent objects. For
example,

>>> s1=input(“Enter a string:”)#assume you entered hello

>>> s2= input(“Enter a string:”)#assume you entered hello

>>> s1 is s2 #check s1 and s2 are identical False

>>> s1 == s2 #check s1 and s2 are equivalent True

Here s1 and s2 are equivalent, but not identical.

If two objects are identical, they are also equivalent, but if they are
equivalent, they are not necessarily identical.

String literals are interned by default. That is, when two string literals

are created in the program with a same value, they are going to refer
same object. But, string variables read from the key-board will not have

this behavior, because their values are depending on the user’s choice.

Lists are not interned. Hence, we can see following result –

>>> ls1=[1,2,3]

>>> ls2=[1,2,3]

>>> ls1 is ls2 #output is False

>>> ls1 == ls2 #output is True

3.1.11 Aliasing

When an object is assigned to other using assignment operator, both of
them will refer to same object in the memory. The association of a
variable with an object is called as reference.

>>> ls1=[1,2,3]

>>> ls2= ls1

3.1.12 List Arguments
When a list is passed to a function as an argument, then function
receives reference to this list. Hence, if the list is modified within a
function, the caller will get the modified version. Consider an example –

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 13

def del_front(t):

del t[0]

ls = ['a', 'b', 'c']

del_front(ls)

print(ls) # output is ['b', 'c']

Now, ls2 is said to be reference of ls1. In other words, there are two

references to the same object in the memory.

An object with more than one reference has more than one name, hence
we say that object is aliased. If the aliased object is mutable, changes
made in one alias will reflect the other.

>>> ls2[1]= 34

>>> print(ls1) #output is [1, 34, 3]

Strings are safe in this regards, as they are immutable.

Here, the argument ls and the parameter t both are aliases to same object.

One should understand the operations that will modify the list and the
operations that create a new list. For example, the append() function

modifies the list, whereas the + operator creates a new list.

>>> t1 = [1, 2]

>>> t2 = t1.append(3)

>>> print(t1) #output is [1 2 3]

>>> print(t2) #prints None

>>> t3 = t1 + [5]

>>> print(t3) #output is [1 2 3 5]

>>> t2 is t3 #output is False

Here, after applying append() on t1 object, the t1 itself has been
modified and t2 is not going to get anything. But, when + operator is
applied, t1 remains same but t3 will get the updated result.

The programmer should understand such differences when he/she
creates a function intending to modify a list. For example, the following
function has no effect on the original list –

def test(t):

t=t[1:]

ls=[1,2,3]

test(ls)

print(ls) #prints [1, 2, 3]

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 14

One can write a return statement after slicing as below –

def test(t):

return t[1:]

ls=[1,2,3]

ls1=test(ls)

print(ls1) #prints [2, 3]

print(ls) #prints [1, 2, 3]

In the above example also, the original list is not modified, because a
return statement always creates a new object and is assigned to LHS

variable at the position of function call.

3.2 DICTIONARIES

A dictionary is a collection of unordered set of key:value pairs, with the

requirement that keys are unique in one dictionary. Unlike lists and

strings where elements are accessed using index values (which are

integers), the values in dictionary are accessed using keys. A key in

dictionary can be any immutable type like strings, numbers and tuples.

(The tuple can be made as a key for dictionary, only if that tuple consist

of string/number/ sub-tuples). As lists are mutable – that is, can be

modified using index assignments, slicing, or using methods like

append(), extend() etc, they cannot be a key for dictionary.

One can think of a dictionary as a mapping between set of indices (which

are actually keys) and a set of values. Each key maps to a value.

An empty dictionary can be created using two ways –

d= {}

OR
d=dict()

To add items to dictionary, we can use square brackets as –
>>> d={}

>>> d["Mango"]="Fruit"

>>> d["Banana"]="Fruit"

>>> d["Cucumber"]="Veg"

>>> print(d)

{'Mango': 'Fruit', 'Banana': 'Fruit', 'Cucumber':

'Veg'}

To initialize a dictionary at the time of creation itself, one can use the
code like –

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 15

>>> tel_dir={'Tom': 3491, 'Jerry':8135}

>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135}

>>> tel_dir['Donald']=4793

>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

NOTE that the order of elements in dictionary is unpredictable. That is,

in the above example, don’t assume that 'Tom': 3491 is first item, 'Jerry':

8135 is second item etc. As dictionary members are not indexed over

integers, the order of elements inside it may vary. However, using a key,

we can extract its associated value as shown below –

>>> print(tel_dir['Jerry'])

8135

Here, the key 'Jerry' maps with the value 8135, hence it doesn’t matter

where exactly it is inside the dictionary.

If a particular key is not there in the dictionary and if we try to access

such key, then the KeyError is generated.

>>> print(tel_dir['Mickey'])

KeyError: 'Mickey'

The len() function on dictionary object gives the number of key-value

pairs in that object.
>>> print(tel_dir)

{'Tom': 3491, 'Jerry': 8135, 'Donald': 4793}

>>> len(tel_dir)

3

The in operator can be used to check whether any key (not value)
appears in the dictionary object.

>>> 'Mickey' in tel_dir #output is False

>>> 'Jerry' in tel_dir #output is True

>>> 3491 in tel_dir #output is False

We observe from above example that the value 3491 is associated with

the key 'Tom' in tel_dir. But, the in operator returns False.

The dictionary object has a method values() which will return a list of

all the values associated with keys within a dictionary. If we would like

to check whether a particular value exist in a dictionary, we can make

use of it as shown below –

>>> 3491 in tel_dir.values() #output is True

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 16

The in operator behaves differently in case of lists and dictionaries as

explained hereunder–

• When in operator is used to search a value in a list, then linear

search algorithm is used internally. That is, each element in the

list is checked one by one sequentially. This is considered to be

expensive in the view of total time taken to process. Because, if

there are 1000 items in the list, and if the element in the list which

we are search for is in the last position (or if it does not exists), then

before yielding result of search (True or False), we would have done

1000 comparisons. In other words, linear search requires n

number of comparisons for the input size of n elements. Time

complexity of the linear search algorithm is O(n).

• The keys in dictionaries of Python are basically hashable

elements. The concept of hashing is applied to store (or maintain)

the keys of dictionaries. Normally hashing techniques have the

time complexity as O(log n) for basic operations like insertion,

deletion and searching. Hence, the in operator applied on keys of

dictionaries works better compared to that on lists. (Hashing

technique is explained at the end of this Section, for curious

readers)

3.2.1 Dictionary as a Collection of Counters

Assume that we need to count the frequency of alphabets in a given

string. There are different methods to do it –

• Create 26 variables to represent each alphabet. Traverse the given

string and increment the corresponding counter when an alphabet

is found.

• Create a list with 26 elements (all are zero in the beginning)

representing alphabets. Traverse the given string and increment

corresponding indexed position in the list when an alphabet is

found.

• Create a dictionary with characters as keys and counters as values.

When we find a character for the first time, we add the item to

dictionary. Next time onwards, we increment the value of existing

item.

Each of the above methods will perform same task, but the logic of

implementation will be different. Here, we will see the implementation

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 17

using dictionary.

s=input("Enter a string:") #read a string

d=dict() #create empty dictionary

for ch in s: #traverse through string if

ch not in d: #if new character found

d[ch]=1 #initialize counter to 1

else: #otherwise, increment counter

d[ch]+=1

print(d) #display the dictionary

The sample output would be –

Enter a string: Hello World

{'H': 1, 'e': 1, 'l': 3, 'o': 2, ' ': 1, 'W': 1, 'r': 1, 'd':

1}

It can be observed from the output that, a dictionary is created here with

characters as keys and frequencies as values. Note that, here we have

computed histogram of counters.

Dictionary in Python has a method called as get(), which takes key and

a default value as two arguments. If key is found in the dictionary, then

the get() function returns corresponding value, otherwise it returns

default value. For example,

>>> tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

>>> print(tel_dir.get('Jerry',0))

8135

>>> print(tel_dir.get('Donald',0))

0

In the above example, when the get() function is taking 'Jerry' as

argument, it returned corresponding value, as 'Jerry' is found in tel_dir .

Whereas, when get() is used with 'Donald' as key, the default value 0

(which is provided by us) is returned.

The function get() can be used effectively for calculating frequency of

alphabets in a string. Here is the modified version of the program –

s=input("Enter a

string:") d=dict()

for ch in s:

d[ch]=d.ge

t(ch,0)+1

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 18

print(d)

In the above program, for every character ch in a given string, we will try
to retrieve a value. When the ch is found in d, its value is retrieved, 1 is
added to it, and restored. If ch is not found, 0 is taken as default and then
1 is added to it.

3.2.2 Looping and Dictionaries

When a for-loop is applied on dictionaries, it will iterate over the keys of

dictionary. If we want to print key and values separately, we need to use

the statements as shown –

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

for k in tel_dir:

print(k, tel_dir[k])

Output would be –
Tom 3491

Jerry 8135

Mickey 1253

Note that, while accessing items from dictionary, the keys may not be in

order. If we want to print the keys in alphabetical order, then we need to

make a list of the keys, and then sort that list. We can do so using keys()

method of dictionary and sort() method of lists. Consider the following

code –

tel_dir={'Tom': 3491, 'Jerry':8135, 'Mickey':1253}

ls=list(tel_dir.keys())

print("The list of keys:",ls)

 ls.sort()

print("Dictionary elements in alphabetical order:")

for k in ls:

print(k, tel_dir[k])

The output would be –
The list of keys: ['Tom', 'Jerry', 'Mickey']

Dictionary elements in alphabetical order:

Jerry 8135

Mickey 1253

Tom 3491

Note: The key-value pair from dictionary can be together accessed

with the help of a method items() as shown –

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 19

>>> d={'Tom':3412, 'Jerry':6781, 'Mickey':1294}

>>> for k,v in d.items():

print(k,v)

Output:
Tom 3412

Jerry 6781

Mickey 1294

The usage of comma-separated list k,v here is internally a tuple (another
data structure in Python, which will be discussed later).

3.2.3 Reverse lookup

Given a dictionary d and a key k, it is easy to find the corresponding value

v = d[k]. This operation is called a lookup. But what if you have v and you

want to find k? You have two problems: first, there might be more than

one key that maps to the value v. Depending on the application, you might

be able to pick one, or you might have to make a list that contains all of

them. Second, there is no simple syntax to do a reverse lookup; you have

to search. Here is a function that takes a value and returns the first key

that maps to that value:

def reverse_lookup(d, v):

for k in d:

if d[k] == v:

return k

raise LookupError()

This function is yet another example of the search pattern, but it uses a

feature we haven’t seen before, raise. The raise statement causes an

exception; in this case it causes a LookupError, which is a built-in

exception used to indicate that a lookup operation failed.

If we get to the end of the loop, that means v doesn’t appear in the

dictionary as a value, so we raise an exception. Here is an example of a

successful reverse lookup:

>>> h = histogram('parrot')

>>> key = reverse_lookup(h, 2)

>>> key

'r'

And an unsuccessful one:

>>> key = reverse_lookup(h, 3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 5, in reverse_lookup

LookupError

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 20

The effect when you raise an exception is the same as when Python raises

one: it prints a traceback and an error message. The raise statement can

take a detailed error message as an optional argument. For example:

>>> raise LookupError('value does not appear in the

dictionary')

Traceback (most recent call last):

File "<stdin>", line 1, in ?

LookupError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if you have to do

it often, or if the dictionary gets big, the performance of your program will

suffer.

3.2.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you are given a

dictionary that maps from letters to frequencies, you might want to invert

it; that is, create a dictionary that maps from frequencies to letters. Since

there might be several letters with the same frequency, each value in the

inverted dictionary should be a list of letters. Here is a function that inverts

a dictionary:

def invert_dict(d):

inverse = dict()

for key in d:

val = d[key]

if val not in inverse:

inverse[val] = [key]

else:

inverse[val].append(key)

return inverse

Figure 3.1: State diagram.

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 21

Each time through the loop, key gets a key from d and val gets the

corresponding value. If val is not in inverse, that means we haven’t seen it

before, so we create a new item and initialize it with a singleton (a list that

contains a single element). Otherwise, we have seen this value before, so

we append the corresponding key to the list.

Here is an example:

>>> hist = histogram('parrot')

>>> hist

{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}

>>> inverse = invert_dict(hist)

>>> inverse

{1: ['a', 'p', 't', 'o'], 2: ['r']}

Figure 3.1 is a state diagram showing hist and inverse. A dictionary is

represented as a box with the type dict above it and the key-value pairs

inside. If the values are integers, floats or strings, I draw them inside the

box, but I usually draw lists outside the box, just to keep the diagram

simple. Lists can be values in a dictionary, as this example shows, but they

cannot be keys. Here’s what happens if you try:

>>> t = [1, 2, 3]

>>> d = dict()

>>> d[t] = 'oops'

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: list objects are unhashable

I mentioned earlier that a dictionary is implemented using a hashtable and

that means that the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer.

Dictionaries use these integers, called hash values, to store and look up

key-value pairs.

3.2.5 Dictionaries and Files

A dictionary can be used to count the frequency of words in a file.

Consider a file myfile.txt

consisting of following text –

hello, how are you?

 I am doing fine.

How about you?

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 22

Now, we need to count the frequency of each of the word in this file.
So, we need to take an outer loop for iterating over entire file, and an

inner loop for traversing each line in a file. Then in every line, we count
the occurrence of a word, as we did before for a character. The program

is given as below –

fname=input("Enter file name:")

try:

fhand=ope

n(fname)

except:

print("File cannot be opened")

exit()

d=dict()

for line in fhand:

for word in line.split():

d[word]=d.get(word,0)+1

print(d)

The output of this program when the input file is myfile.txt would be –

Enter file name: myfile.txt

{'hello,': 1, 'how': 1, 'are': 1, 'you?': 2, 'I': 1,

'am': 1,'doing': 1, 'fine.': 1, 'How': 1, 'about': 1}

Few points to be observed in the above output –

• The punctuation marks like comma, full point, question mark etc.

are also considered as a part of word and stored in the dictionary.

This means, when a particular word appears in a file with and

without punctuation mark, then there will be multiple entries of

that word.

• The word ‘how’ and ‘How’ are treated as separate words in the

above example because of uppercase and lowercase letters.

While solving problems on text analysis, machine learning, data analysis

etc. such kinds of treatment of words lead to unexpected results. So, we

need to be careful in parsing the text and we should try to eliminate

punctuation marks, ignoring the case etc. The procedure is discussed in

the next section.

3.2.6 Advanced Text Parsing

As discussed in the previous section, during text parsing, our aim is to
eliminate punctuation marks as a part of word. The string module of

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 23

Python provides a list of all punctuation marks as shown –

>>> import string

>>> string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The str class has a method maketrans() which returns a translation table
usable for another method translate(). Consider the following syntax to
understand it more clearly –

line.translate(str.maketrans(fromstr, tostr, deletestr))

The above statement replaces the characters in fromstr with the

character in the same position in tostr and delete all characters that are in
deletestr. The fromstr and tostr can be empty strings and the deletestr

parameter can be omitted.

Using these functions, we will re-write the program for finding frequency
of words in a file.

import string

fname=input("Enter

file name:") try:

fhand=open(fname)

except:

print("File cannot be opened")

exit()

d=dict()

for line in

fhand:

line=line.r

strip()

line=line.translate(line.maketrans('','',string.punctuati

on)) line=line.lower()

for word in

line.split():

d[word]=d.get(wor

d,0)+1

print(d)

Now, the output would be –
Enter file name:myfile.txt

{'hello': 1, 'how': 2, 'are': 1, 'you': 2, 'i': 1,

'am': 1, 'doing': 1, 'fine': 1, 'about': 1}

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 24

Comparing the output of this modified program with the previous one,
we can make out that all the punctuation marks are not considered for

parsing and also the case of the alphabets are ignored.

3.2.7 Memos

If you played with the fibonacci function from Section 6.7, you might have

noticed that the bigger the argument you provide, the longer the function
takes to run. Furthermore, the run time increases quickly.

To understand why, consider Figure 3.2, which shows the call graph for
fibonacci with n=4:

Figure 3.2: Call graph

A call graph shows a set of function frames, with lines connecting each

frame to the frames of the functions it calls. At the top of the graph,

fibonacci with n=4 calls fibonacci with n=3 and n=2. In turn, fibonacci with

n=3 calls fibonacci with n=2 and n=1. And so on. Count how many times

fibonacci(0) and fibonacci(1) are called. This is an inefficient solution to the

problem, and it gets worse as the argument gets bigger. One solution is to

keep track of values that have already been computed by storing them in

a dictionary. A previously computed value that is stored for later use is

called a memo. Here is a “memoized” version of fibonacci:

known = {0:0, 1:1}

def fibonacci(n):

if n in known:

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 25

return known[n]

res = fibonacci(n-1) + fibonacci(n-2)

known[n] = res

return res

known is a dictionary that keeps track of the Fibonacci numbers we

already know. It starts with two items: 0 maps to 0 and 1 maps to 1.

Whenever fibonacci is called, it checks known. If the result is already there,

it can return immediately. Otherwise it has to compute the new value, add

it to the dictionary, and return it. If you run this version of fibonacci and

compare it with the original, you will find that it is much faster

3.2.8 Debugging

When we are working with big datasets (like file containing thousands of

pages), it is difficult to debug by printing and checking the data by hand.

So, we can follow any of the following procedures for easy debugging of

the large datasets –

• Scale down the input: If possible, reduce the size of the dataset.

For example if the program reads a text file, start with just first 10

lines or with the smallest example you can find. You can either edit

the files themselves, or modify the program so it reads only the first n

lines. If there is an error, you can reduce n to the smallest value that

manifests the error, and then increase it gradually as you correct the

errors.

• Check summaries and types: Instead of printing and checking the

entire dataset, consider printing summaries of the data: for example,

the number of items in a dictionary or the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type.

For debugging this kind of error, it is often enough to print the type

of a value.

• Write self-checks: Sometimes you can write code to check for errors

automatically. For

example, if you are computing the average of a list of numbers, you

could check that the result is not greater than the largest element in

the list or less than the smallest. This is called a sanity check

because it detects results that are “completely illogical”. Another kind

of check compares the results of two different computations to see if

they are consistent. This is called a consistency check.

• Pretty print the output: Formatting debugging output can make

it easier to spot an error.

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 26

Hashing Technique (For curious minds – Only for

understanding, not for Exams!!)

Hashing is a way of representing dictionaries (Not a Python data

structure Dictionary!!). Dictionary is an abstract data type with a set of

operations searching, insertion and deletion defined on its elements. The

elements of dictionary can be numeric or characters or most of the times,

records. Usually, a record consists of several fields; each may be of

different data types. For example, student record may contain student

id, name, gender, marks etc. Every record is usually identified by some

key. Hashing technique is very useful in database management,

because it is considered to be very efficient searching technique.

Here we will consider the implementation of a dictionary of n records

with keys k1, k2 …kn. Hashing is based on the idea of distributing keys

among a one-dimensional array

H[0…m-1], called hash table.

For each key, a value is computed using a predefined function called

hash function. This function assigns an integer, called hash address,
between 0 to m-1 to each key. Based on the hash address, the keys will
be distributed in a hash table.

For example, if the keys k1, k2, …., kn are integers, then a hash function
can be h(K) = K mod m.

Let us take keys as 65, 78, 22, 30, 47, 89. And let hash function be,

h(k) = k%10.

Then the hash addresses may be any value from 0 to 9. For each key,
hash address will be computed as –

h(65) = 65 %10 = 5
h(78) = 78%10 = 8
h(22)= 22 % 10 =2
h(30)= 30 %10 =0
h(47) = 47 %10 = 7
h(89)=89 % 10 = 9

Now, each of these keys can be hashed into a hash table as –

0 1 2 3 4 5 6 7 8 9

30 22 65 47 78 89

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 27

In general, a hash function should satisfy the following requirements:

• A hash function needs to distribute keys among the cells of hash
table as evenly as possible.

• A hash function has to be easy to compute.

Hash Collisions: Let us have n keys and the hash table is of size m

such that m<n. As each key will have an address with any value between
0 to m-1, it is obvious that more than one key will have same hash

address. That is, two or more keys need to be hashed into the same cell
of hash table. This situation is called as hash collision.

In the worst case, all the keys may be hashed into same cell of hash
table. But, we can avoid this by choosing proper size of hash table and

hash function. Anyway, every hashing scheme must have a mechanism
for resolving hash collision. There are two methods for hash collision

resolution, viz.

• Open hashing

• closed hashing

Open Hashing (or Separate Chaining): In open hashing, keys are

stored in linked lists attached to cells of a hash table. Each list contains

all the keys hashed to its cell. For example, consider the elements
65, 78, 22, 30, 47, 89, 55, 42, 18, 29, 37.

If we take the hash function as h(k)= k%10, then the hash addresses will be

– h(65) = 65 %10 = 5 h(78) = 78%10 = 8
h(22)= 22 % 10 =2 h(30)= 30 %10 =0
h(47) = 47 %10 = 7 h(89)=89 % 10 = 9
h(55)=55%10 =5 h(42)=42%10 =2
h(18)=18%10 =8 h(29)=29%10=9
h(37)=37%10 =7

Operations on Hashing:

• Searching: Now, if we want to search for the key element in a hash

Python Programming (18EC652) Module 3

Manojkumar S B, Asst Prof, Dept of ECE,

BGSIT

Page 28

table, we need to find the hash address of that key using same
hash function. Using the obtained hash address, we need to search

the linked list by tracing it, till either the key is found or list gets
exhausted.

• Insertion: Insertion of new element to hash table is also done in
similar manner. Hash key is obtained for new element and is

inserted at the end of the list for that particular cell.

• Deletion: Deletion of element is done by searching that element

and then deleting it from a linked list.

Closed Hashing (or Open Addressing): In this technique, all keys

are stored in the hash table itself without using linked lists. Different

methods can be used to resolve hash collisions. The simplest technique

is linear probing.

This method suggests to check the next cell from where the collision
occurs. If that cell is empty, the key is hashed there. Otherwise, we will

continue checking for the empty cell in a circular manner. Thus, in this
technique, the hash table size must be at least as large as the total
number of keys. That is, if we have n elements to be hashed, then the

size of hash table should be greater or equal to n.

Example: Consider the elements 65, 78, 18, 22, 30, 89, 37, 55, 42
Let us take the hash function as h(k)= k%10, then the hash addresses
will be – h(65) = 65 %10 = 5 h(78) = 78%10 = 8

h(18)=18%10 =8 h(22)= 22 % 10 =2
h(30)= 30 %10 =0 h(89)=89 % 10 = 9
h(37)=37%10 =7 h(55)=55%10 =5
h(42)=42%10 =2

Since there are 9 elements in the list, our hash table should at least be
of size 9. Here we are taking the size as 10.

Now, hashing is done as below –

Drawbacks:

• Searching may become like a linear search and hence not efficient.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

MODULE 4

TUPLES & FILES

Tuples are immutable

 A tuple1 is a sequence of values much like a list.

 The values stored in a tuple can be any type, and they are indexed by integers.

 The important difference is that tuples are immutable.

 Tuples are also comparable and hashable so we can sort lists of them and use tuples as

key values in Python dictionaries.

 Syntactically, a tuple is a comma-separated list of values

>>> t = 'a', 'b', 'c', 'd', 'e'

Although it is not necessary, it is common to enclose tuples in parentheses to help us quickly

identify tuples when we look at Python code:

>>> t = ('a', 'b', 'c', 'd', 'e')

To create a tuple with a single element, you have to include the final comma:

>>> t1 = ('a',)

>>> type(t1)

<type 'tuple'>

Without the comma Python treats (’a’) as an expression with a string in parentheses that

evaluates to a string:

>>> t2 = ('a')

>>> type(t2)

<type 'str'>

Another way to construct a tuple is the built-in function tuple. With no argument,

it creates an empty tuple:

>>> t = tuple()

>>> print(t)

()

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

If the argument is a sequence (string, list, or tuple), the result of the call to tuple

is a tuple with the elements of the sequence:

>>> t = tuple('lupins')

>>> print(t)

('l', 'u', 'p', 'i', 'n', 's')

Because tuple is the name of a constructor, you should avoid using it as a variable name.

Most list operators also work on tuples. The bracket operator indexes an element:

>>> t = ('a', 'b', 'c', 'd', 'e')

>>> print(t[0])

'a'

And the slice operator selects a range of elements.

>>> print(t[1:3])

('b', 'c')

But if you try to modify one of the elements of the tuple, you get an error:

>>> t[0] = 'A'

TypeError: object doesn't support item assignment

You can’t modify the elements of a tuple, but you can replace one tuple with another:

>>> t = ('A',) + t[1:]

>>> print(t)

('A', 'b', 'c', 'd', 'e')

Comparing tuples

The comparison operators work with tuples and other sequences. Python starts by

comparing the first element from each sequence. If they are equal, it goes on to the

next element, and so on, until it finds elements that differ. Subsequent elements

are not considered (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)

True

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

The sort function works the same way. It sorts primarily by first element, but in the case of a tie,

it sorts by second element, and so on.

This feature lends itself to a pattern called DSU for Decorate a sequence by building a list of

tuples with one or more sort keys preceding the elements from the sequence, Sort the list of

tuples using the Python built-in sort, and Undecorate by extracting the sorted elements of the

sequence.

[DSU]

For example, suppose you have a list of words and you want to sort them from longest to

shortest:

txt = 'but soft what light in yonder window breaks'

words = txt.split()

t = list()

for word in words:

t.append((len(word), word))

t.sort(reverse=True)

res = list()

for length, word in t:

res.append(word)

print(res)

 The first loop builds a list of tuples, where each tuple is a word preceded by its length.

sort compares the first element, length, first, and only considers the second element to

break ties.

 The keyword argument reverse=True tells sort to go in decreasing order.

 The second loop traverses the list of tuples and builds a list of words in descending order

of length.

 The four-character words are sorted in reverse alphabetical order, so “what” appears

before “soft” in the following list.

The output of the program is as follows:

['yonder', 'window', 'breaks', 'light', 'what',

'soft', 'but', 'in']

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Of course the line loses much of its poetic impact when turned into a Python list and sorted in

descending word length order.

Tuple assignment

 One of the unique syntactic features of the Python language is the ability to have a tuple

on the left side of an assignment statement.

 This allows you to assign more than one variable at a time when the left side is a

sequence.

 In this example we have a two-element list (which is a sequence) and assign the first and

second elements of the sequence to the variables x and y in a single statement.

>>> m = ['have', 'fun']

>>> x, y = m

>>> x

'have'

>>> y

'fun'

>>>

It is not magic, Python roughly translates the tuple assignment syntax to be the following:

>>> m = ['have', 'fun']

>>> x = m[0]

>>> y = m[1]

>>> x

'have'

>>> y

'fun'

>>>

Stylistically when we use a tuple on the left side of the assignment statement, we omit the

parentheses, but the following is an equally valid syntax:

>>> m = ['have', 'fun']

>>> (x, y) = m

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

>>> x

'have'

>>> y

'fun'

>>>

A particularly clever application of tuple assignment allows us to swap the values of two

variables in a single statement:

>>> a, b = b, a

 Both sides of this statement are tuples, but the left side is a tuple of variables; the right

side is a tuple of expressions. Each value on the right side is assigned to its respective

variable on the left side.

 All the expressions on the right side are evaluated before any of the assignments.

 The number of variables on the left and the number of values on the right must be the

same:

>>> a, b = 1, 2, 3

ValueError: too many values to unpack

More generally, the right side can be any kind of sequence (string, list, or tuple).

For example, to split an email address into a user name and a domain, you could write:

>>> addr = 'monty@python.org'

>>> uname, domain = addr.split('@')

The return value from split is a list with two elements; the first element is assigned to uname, the

second to domain.

>>> print(uname)

monty

>>> print(domain)

python.org

Tuples as return values

 A function can only return one value, but if the value is a tuple, the effect is the same as

returning multiple values.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

 For example, if you want to divide two integers and compute the quotient and remainder,

it is inefficient to compute x/y and then x%y.

 It is better to compute them both at the same time.

 The built-in function divmod takes two arguments and returns a tuple of two values, the

quotient and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)

>>> t

(2, 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)

>>> quot

2

>>> rem

1

Here is an example of a function that returns a tuple:

def min_max(t):

return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a sequence.

min_max computes both and returns a tuple of two values.

Variable-length argument tuples

Functions can take a variable number of arguments. A parameter name that begins with *

gathers arguments into a tuple. For example, printall takes any number of arguments and prints

them:

def printall(*args):

print(args)

The gather parameter can have any name you like, but args is conventional. Here’s how the

function works:

>>> printall(1, 2.0, '3')

(1, 2.0, '3')

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

The complement of gather is scatter. If you have a sequence of values and you want to pass it to

a function as multiple arguments, you can use the * operator.

For example, divmod takes exactly two arguments; it doesn’t work with a tuple:

>>> t = (7, 3)

>>> divmod(t)

TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)

(2, 1)

Many of the built-in functions use variable-length argument tuples. For example, max and min

can take any number of arguments:

>>> max(1, 2, 3)

3

But sum does not.

>>> sum(1, 2, 3)

TypeError: sum expected at most 2 arguments, got 3

As an exercise, write a function called sumall that takes any number of arguments and returns

their sum.

Lists and tuples

zip is a built-in function that takes two or more sequences and returns a list of tuples where each

tuple contains one element from each sequence.

The name of the function refers to a zipper, which joins and interleaves two rows of teeth.

This example zips a string and a list:

>>> s = 'abc'

>>> t = [0, 1, 2]

>>> zip(s, t)

<zip object at 0x7f7d0a9e7c48>

The result is a zip object that knows how to iterate through the pairs. The most common use of

zip is in a for loop:

>>> for pair in zip(s, t):

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

... print(pair)

...

('a', 0)

('b', 1)

('c', 2)

A zip object is a kind of iterator, which is any object that iterates through a sequence.

Iterators are similar to lists in some ways, but unlike lists, you can’t use an index to select an

element from an iterator.

If you want to use list operators and methods, you can use a zip object to make a list:

>>> list(zip(s, t))

[('a', 0), ('b', 1), ('c', 2)]

The result is a list of tuples; in this example, each tuple contains a character from the string and

the corresponding element from the list.

If the sequences are not the same length, the result has the length of the shorter one.

>>> list(zip('Anne', 'Elk'))

[('A', 'E'), ('n', 'l'), ('n', 'k')]

You can use tuple assignment in a for loop to traverse a list of tuples:

t = [('a', 0), ('b', 1), ('c', 2)]

for letter, number in t:

print(number, letter)

Each time through the loop, Python selects the next tuple in the list and assigns the elements

to letter and number. The output of this loop is:

0 a

1 b

2 c

If you combine zip, for and tuple assignment, you get a useful idiom for traversing two

(or more) sequences at the same time. For example, has_match takes two sequences, t1

and t2, and returns True if there is an index i such that t1[i] == t2[i]:

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

def has_match(t1, t2):

for x, y in zip(t1, t2):

if x == y:

return True

return False

If you need to traverse the elements of a sequence and their indices, you can use the built-in

function enumerate:

for index, element in enumerate('abc'):

print(index, element)

The result from enumerate is an enumerate object, which iterates a sequence of pairs; each

pair contains an index (starting from 0) and an element from the given sequence. In this

example, the output is

0 a

1 b

2 c

Again.

Dictionaries and tuples

Dictionaries have a method called items that returns a sequence of tuples, where each tuple is a

key-value pair.

>>> d = {'a':0, 'b':1, 'c':2}

>>> t = d.items()

>>> t

dict_items([('c', 2), ('a', 0), ('b', 1)])

The result is a dict_items object, which is an iterator that iterates the key-value pairs.

You can use it in a for loop like this:

>>> for key, value in d.items():

... print(key, value)

...

c 2

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

a 0

b 1

As you should expect from a dictionary, the items are in no particular order.

Going in the other direction, you can use a list of tuples to initialize a new dictionary:

>>> t = [('a', 0), ('c', 2), ('b', 1)]

>>> d = dict(t)

>>> d

{'a': 0, 'c': 2, 'b': 1}

Combining dict with zip yields a concise way to create a dictionary:

>>> d = dict(zip('abc', range(3)))

>>> d

{'a': 0, 'c': 2, 'b': 1}

The dictionary method update also takes a list of tuples and adds them, as key-value pairs, to an

existing dictionary.

 It is common to use tuples as keys in dictionaries (primarily because you can’t use lists).

 For example, a telephone directory might map from last-name, first-name pairs to

telephone numbers.

 Assuming that we have defined last, first and number, we could write:

directory[last, first] = number

The expression in brackets is a tuple. We could use tuple assignment to traverse this dictionary.

for last, first in directory:

print(first, last, directory[last,first])

 This loop traverses the keys in directory, which are tuples.

 It assigns the elements of each tuple to last and first, then prints the name and

corresponding telephone number.

 There are two ways to represent tuples in a state diagram.

 The more detailed version shows the indices and elements just as they appear in a list.

 For example, the tuple ('Cleese', 'John') would appear as in Figure a.

 But in a larger diagram you might want to leave out the details.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

 For example, a diagram of the telephone directory might appear as in Figure b.

 Here the tuples are shown using Python syntax as a graphical shorthand.

 The telephone number in the diagram is the complaints line for the BBC, so please don’t

call it.

Fig a Fig b

Figure: Stack diagram

Multiple assignment with dictionaries

Combining items, tuple assignment, and for, you can see a nice code pattern for traversing the

keys and values of a dictionary in a single loop:

for key, val in list(d.items()):

print(val, key)

This loop has two iteration variables because items returns a list of tuples and key, val is a tuple

assignment that successively iterates through each of the key-value pairs in the dictionary.

For each iteration through the loop, both key and value are advanced to the next key-value pair in

the dictionary (still in hash order).

The output of this loop is:

10 a

22 c

1 b

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Again, it is in hash key order (i.e., no particular order).

If we combine these two techniques, we can print out the contents of a dictionary sorted by the

value stored in each key-value pair.

To do this, we first make a list of tuples where each tuple is (value, key). The items method

would give us a list of (key, value) tuples, but this time we want to sort by value, not key. Once

we have constructed the list with the value-key tuples, it is a simple matter to sort the list in

reverse order and print out the new, sorted list.

>>> d = {'a':10, 'b':1, 'c':22}

>>> l = list()

>>> for key, val in d.items() :

... l.append((val, key))

...

>>> l

[(10, 'a'), (22, 'c'), (1, 'b')]

>>> l.sort(reverse=True)

>>> l

[(22, 'c'), (10, 'a'), (1, 'b')]

>>>

By carefully constructing the list of tuples to have the value as the first element of each tuple, we

can sort the list of tuples and get our dictionary contents sorted by value.

Files

Persistence

The CPU and memory are where our software works and runs. It is where all of the “thinking”

happens.

But if you recall from our hardware architecture discussions, once the power is turned off,

anything stored in either the CPU or main memory is erased. So up to now, our programs have

just been transient fun exercises to learn Python.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Figure: Secondary Memory

Secondary memory is not erased when the power is turned off. Or in the case of a USB flash

drive, the data we write from our programs can be removed from the system and transported to

another system.

We will primarily focus on reading and writing text files such as those we create in a text editor.

Opening files

 When we want to read or write a file (say on your hard drive), we first must open the file.

Opening the file communicates with your operating system, which knows where the data

for each file is stored.

 When you open a file, you are asking the operating system to find the file by name and

make sure the file exists.

 In this example, we open the file mbox.txt, which should be stored in the same folder that

you are in when you start Python.

>>> fhand = open('mbox.txt')

>>> print(fhand)

<_io.TextIOWrapper name='mbox.txt' mode='r' encoding='cp1252'>

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

 If the open is successful, the operating system returns us a file handle.

 The file handle is not the actual data contained in the file, but instead it is a “handle” that

we can use to read the data.

 You are given a handle if the requested file exists and you have the proper permissions to

read the file.

Figure 7.2: A File Handle

If the file does not exist, open will fail with a traceback and you will not get a handle to access

the contents of the file:

>>> fhand = open('stuff.txt')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory: 'stuff.txt'

Reading and writing

A text file is a sequence of characters stored on a permanent medium like a hard drive, flash

memory, or CD-ROM.We saw how to open and read a file in Section 9.1.

To write a file, you have to open it with mode 'w' as a second parameter:

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

If the file already exists, opening it in write mode clears out the old data and starts fresh, so be

careful! If the file doesn’t exist, a new one is created.

open returns a file object that provides methods for working with the file.

The write method puts data into the file.

>>> line1 = "This here's the wattle,\n"

>>> fout.write(line1)

24

The return value is the number of characters that were written. The file object keeps track

of where it is, so if you call write again, it adds the new data to the end of the file.

>>> line2 = "the emblem of our land.\n"

>>> fout.write(line2)

24

When you are done writing, you should close the file.

>>> fout.close()

If you don’t close the file, it gets closed for you when the program ends.

Format operator

The argument of write has to be a string, so if we want to put other values in a file, we have to

convert them to strings. The easiest way to do that is with str:

>>> x = 52

>>> fout.write(str(x))

An alternative is to use the format operator, %. When applied to integers, % is the modulus

operator.

But when the first operand is a string, % is the format operator.

The first operand is the format string, which contains one or more format sequences, which

specify how the second operand is formatted. The result is a string.

For example, the format sequence '%d' means that the second operand should be formatted as a

decimal integer:

>>> camels = 42

>>> '%d' % camels

'42'

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

The result is the string '42', which is not to be confused with the integer value 42.

A format sequence can appear anywhere in the string, so you can embed a value in a sentence:

>>> 'I have spotted %d camels.' % camels

'I have spotted 42 camels.'

If there is more than one format sequence in the string, the second argument has to be a tuple.

Each format sequence is matched with an element of the tuple, in order.

The following example uses '%d' to format an integer, '%g' to format a floating-point number,

and '%s' to format a string:

>>> 'In %d years I have spotted %g %s.' % (3, 0.1, 'camels')

'In 3 years I have spotted 0.1 camels.'

The number of elements in the tuple has to match the number of format sequences in the string.

Also, the types of the elements have to match the format sequences:

>>> '%d %d %d' % (1, 2)

TypeError: not enough arguments for format string

>>> '%d' % 'dollars'

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in the second, the element is the wrong type.

Filenames and paths

Files are organized into directories (also called “folders”). Every running program has a “current

directory”, which is the default directory for most operations.

For example, when you open a file for reading, Python looks for it in the current directory.

The os module provides functions for working with files and directories (“os” stands for

“operating system”). os.getcwd returns the name of the current directory:

>>> import os

>>> cwd = os.getcwd()

>>> cwd

'/home/dinsdale'

cwd stands for “current working directory”. The result in this example is /home/dinsdale, which

is the home directory of a user named dinsdale.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

A string like '/home/dinsdale' that identifies a file or directory is called a path.

A simple filename, like memo.txt is also considered a path, but it is a relative path because it

relates to the current directory. If the current directory is /home/dinsdale, the filename memo.txt

would refer to /home/dinsdale/memo.txt.

A path that begins with / does not depend on the current directory; it is called an absolute path.

To find the absolute path to a file, you can use os.path.abspath:

>>> os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

os.path provides other functions for working with filenames and paths. For example,

os.path.exists checks whether a file or directory exists:

>>> os.path.exists('memo.txt')

True

If it exists, os.path.isdir checks whether it’s a directory:

>>> os.path.isdir('memo.txt')

False

>>> os.path.isdir('/home/dinsdale')

True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the given directory:

>>> os.listdir(cwd)

['music', 'photos', 'memo.txt']

To demonstrate these functions, the following example “walks” through a directory, prints

the names of all the files, and calls itself recursively on all the directories.

def walk(dirname):

for name in os.listdir(dirname):

path = os.path.join(dirname, name)

if os.path.isfile(path):

print(path)

else:

walk(path)

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

os.path.join takes a directory and a file name and joins them into a complete path.

Catching exceptions

A lot of things can go wrong when you try to read and write files. If you try to open a file that

doesn’t exist, you get an IOError:

>>> fin = open('bad_file')

IOError: [Errno 2] No such file or directory: 'bad_file'

If you don’t have permission to access a file:

>>> fout = open('/etc/passwd', 'w')

PermissionError: [Errno 13] Permission denied: '/etc/passwd'

And if you try to open a directory for reading, you get

>>> fin = open('/home')

IsADirectoryError: [Errno 21] Is a directory: '/home'

 To avoid these errors, you could use functions like os.path.exists and os.path.isfile, but it

would take a lot of time and code to check all the possibilities (if “Errno 21” is any

indication, there are at least 21 things that can go wrong).

 It is better to go ahead and try—and deal with problems if they happen—which is exactly

what the try statement does.

 The syntax is similar to an if...else statement:

try:

fin = open('bad_file')

except:

print('Something went wrong.')

 Python starts by executing the try clause.

 If all goes well, it skips the except clause and proceeds.

 If an exception occurs, it jumps out of the try clause and runs the except clause.

 Handling an exception with a try statement is called catching an exception.

 In this example, the except clause prints an error message that is not very helpful.

 In general, catching an exception gives you a chance to fix the problem, or try again, or at

least end the program gracefully.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Pickling

A limitation of dbm is that the keys and values have to be strings or bytes. If you try to use any

other type, you get an error.

The pickle module can help. It translates almost any type of object into a string suitable for

storage in a database, and then translates strings back into objects.

pickle.dumps takes an object as a parameter and returns a string representation (dumps is short

for “dump string”):

>>> import pickle

>>> t = [1, 2, 3]

>>> pickle.dumps(t)

b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

The format isn’t obvious to human readers; it is meant to be easy for pickle to interpret.

pickle.loads (“load string”) reconstitutes the object:

>>> t1 = [1, 2, 3]

>>> s = pickle.dumps(t1)

>>> t2 = pickle.loads(s)

>>> t2

[1, 2, 3]

Although the new object has the same value as the old, it is not (in general) the same object:

>>> t1 == t2

True

>>> t1 is t2

False

In other words, pickling and then unpickling has the same effect as copying the object.

You can use pickle to store non-strings in a database. In fact, this combination is so common that

it has been encapsulated in a module called shelve.

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Pipes

Most operating systems provide a command-line interface, also known as a shell.

Shells usually provide commands to navigate the file system and launch applications.

For example, in Unix you can change directories with cd, display the contents of a directory with

ls, and launch a web browser by typing (for example) firefox.

Any program that you can launch from the shell can also be launched from Python using a pipe

object, which represents a running program.

For example, the Unix command ls -l normally displays the contents of the current directory in

long format. You can launch ls with os.popen1:

>>> cmd = 'ls -l'

>>> fp = os.popen(cmd)

The argument is a string that contains a shell command.

The return value is an object that behaves like an open file. You can read the output from the ls

process one line at a time with readline or get the whole thing at once with read:

>>> res = fp.read()

When you are done, you close the pipe like a file:

>>> stat = fp.close()

>>> print(stat)

None

The return value is the final status of the ls process;

None means that it ended normally (with no errors).

You can use a pipe to run md5sum from Python and get the result:

>>> filename = 'book.tex'

>>> cmd = 'md5sum ' + filename

>>> fp = os.popen(cmd)

>>> res = fp.read()

>>> stat = fp.close()

>>> print(res)

>>> print(stat)

None

Python Programming (18EC652) Module 4: Tuples & files

Lakshmi D L Asst. Prof., Dept. of ECE, BGSIT, BG Nagara

Writing modules

Any file that contains Python code can be imported as a module. For example, suppose you have

a file named wc.py with the following code:

def linecount(filename):

count = 0

for line in open(filename):

count += 1

return count

print(linecount('wc.py'))

If you run this program, it reads itself and prints the number of lines in the file, which is 7.

You can also import it like this:

>>> import wc

7

Now you have a module object wc:

>>> wc

<module 'wc' from 'wc.py'>

The module object provides linecount:

>>> wc.linecount('wc.py')

7

So that’s how you write modules in Python.

The only problem with this example is that when you import the module it runs the test code at

the bottom.

Normally when you import a module, it defines new functions but it doesn’t run them.

Programs that will be imported as modules often use the following idiom:

if __name__ == '__main__':

print(linecount('wc.py'))

__name__ is a built-in variable that is set when the program starts. If the program is running as a

script, __name__ has the value '__main__'; in that case, the test code runs. Otherwise, if the

module is being imported, the test code is skipped.

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

MODULE 5

Classes and objects, Inheritance

Programmer-defined types

We have used many of Python’s built-in types; now we are going to define a new type. As an

example, we will create a type called Point that represents a point in two-dimensional space.

In mathematical notation, points are often written in parentheses with a comma separating the

coordinates. For example, (0, 0) represents the origin, and (x, y) represents the point x units to

the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, x and y.

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is more complicated than the other options, but it has advantages that will be

apparent soon.

A programmer-defined type is also called a class. A class definition looks like this: class Point:

"""Represents a point in 2-D space."""

The header indicates that the new class is called Point. The body is a docstring that explains what

the class is for. You can define variables and methods inside a class definition, but we will get

back to that later.

Defining a class named Point creates a class object.

>>> Point

<class '__main__.Point'>

Because Point is defined at the top level, its “full name” is __main__.Point.

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

The class object is like a factory for creating objects. To create a Point, you call Point as if it

were a function.

>>> blank = Point()

>>> blank

<__main__.Point object at 0xb7e9d3ac>

The return value is a reference to a Point object, which we assign to blank.

Creating a new object is called instantiation, and the object is an instance of the class.

When you print an instance, Python tells you what class it belongs to and where it is stored

in memory (the prefix 0x means that the following number is in hexadecimal).

Every object is an instance of some class, so “object” and “instance” are interchangeable.

But in this chapter I use “instance” to indicate that I am talking about a programmerdefined type.

Attributes

You can assign values to an instance using dot notation:

>>> blank.x = 3.0

>>> blank.y = 4.0

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi

or string.whitespace. In this case, though, we are assigning values to named elements of

an object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed to

“a-TRIB-ute”, which is a verb.

The following diagram shows the result of these assignments. A state diagram that shows an

object and its attributes is called an object diagram; see Figure

The variable blank refers to a Point object, which contains two attributes. Each attribute refers to

a floating-point number.

You can read the value of an attribute using the same syntax:

>>> blank.y

4.0

>>> x = blank.x

>>> x

3.0

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

The expression blank.x means, “Go to the object blank refers to and get the value of x.” In the

example, we assign that value to a variable named x. There is no conflict between the variable x

and the attribute x.

You can use dot notation as part of any expression. For example:

>>> '(%g, %g)' % (blank.x, blank.y)

'(3.0, 4.0)'

>>> distance = math.sqrt(blank.x**2 + blank.y**2)

>>> distance

5.0

You can pass an instance as an argument in the usual way. For example: def print_point(p):

print('(%g, %g)' % (p.x, p.y))

print_point takes a point as an argument and displays it in mathematical notation. To

invoke it, you can pass blank as an argument:

>>> print_point(blank)

(3.0, 4.0)

Inside the function, p is an alias for blank, so if the function modifies p, blank changes.

As an exercise, write a function called distance_between_points that takes two Points as

arguments and returns the distance between them.

Rectangles

Sometimes it is obvious what the attributes of an object should be, but other times you have

to make decisions. For example, imagine you are designing a class to represent rectangles.

What attributes would you use to specify the location and size of a rectangle? You can ignore

angle; to keep things simple, assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement the

first one, just as an example.

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

Here is the class definition:

class Rectangle:

"""Represents a rectangle.

attributes: width, height, corner.

"""

The docstring lists the attributes: width and height are numbers; corner is a Point object

that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values to the

attributes:

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

The expression box.corner.x means, “Go to the object box refers to and select the attribute

named corner; then go to that object and select the attribute named x.”

Instances as return values

Functions can return instances. For example, find_center takes a Rectangle as an argument

and returns a Point that contains the coordinates of the center of the Rectangle:

def find_center(rect):

p = Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

Here is an example that passes box as an argument and assigns the resulting Point to

center:

>>> center = find_center(box)

>>> print_point(center)

(50, 100)

Objects are mutable

You can change the state of an object by making an assignment to one of its attributes. For

example, to change the size of a rectangle without changing its position, you can modify

the values of width and height:

box.width = box.width + 50

box.height = box.height + 100

You can also write functions that modify objects. For example, grow_rectangle takes a

Rectangle object and two numbers, dwidth and dheight, and adds the numbers to the

width and height of the rectangle:

def grow_rectangle(rect, dwidth, dheight):

rect.width += dwidth

rect.height += dheight

Here is an example that demonstrates the effect:

>>> box.width, box.height

(150.0, 300.0)

>>> grow_rectangle(box, 50, 100)

>>> box.width, box.height

(200.0, 400.0)

Inside the function, rect is an alias for box, so when the function modifies rect, box

changes.

As an exercise, write a function named move_rectangle that takes a Rectangle and two

numbers named dx and dy. It should change the location of the rectangle by adding dx to

the x coordinate of corner and adding dy to the y coordinate of corner.

Copying

Aliasing can make a program difficult to read because changes in one place might have

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

unexpected effects in another place. It is hard to keep track of all the variables that might

refer to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a function

called copy that can duplicate any object:

>>> p1 = Point()

>>> p1.x = 3.0

>>> p1.y = 4.0

>>> import copy

>>> p2 = copy.copy(p1)

p1 and p2 contain the same data, but they are not the same Point.

>>> print_point(p1)

(3, 4)

>>> print_point(p2)

(3, 4)

>>> p1 is p2

False

>>> p1 == p2

False

The is operator indicates that p1 and p2 are not the same object, which is what we expected.

But you might have expected == to yield True because these points contain the

same data. In that case, you will be disappointed to learn that for instances, the default

behavior of the == operator is the same as the is operator; it checks object identity, not

object equivalence. That’s because for programmer-defined types, Python doesn’t know

what should be considered equivalent. At least, not yet.

If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectangle

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

object but not the embedded Point.

>>> box2 = copy.copy(box)

>>> box2 is box

False

>>> box2.corner is box.corner

True

For most applications, this is not what you want. In this example, invoking

grow_rectangle on one of the Rectangles would not affect the other, but invoking

move_rectangle on either would affect both! This behavior is confusing and error-prone.

Fortunately, the copy module provides a method named deepcopy that copies not only the

object but also the objects it refers to, and the objects they refer to, and so on. You will not

be surprised to learn that this operation is called a deep copy.

>>> box3 = copy.deepcopy(box)

>>> box3 is box

False

>>> box3.corner is box.corner

False

box3 and box are completely separate objects.

Inheritance

Card objects

There are fifty-two cards in a deck, each of which belongs to one of four suits and one of

thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending order in

bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on

the game that you are playing, an Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the attributes

should be: rank and suit. It is not as obvious what type the attributes should be.

One possibility is to use strings containing words like 'Spade' for suits and 'Queen' for

ranks. One problem with this implementation is that it would not be easy to compare cards

to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode”

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

means that we are going to define a mapping between numbers and suits, or between

numbers and ranks. This kind of encoding is not meant to be a secret (that would be

“encryption”).

For example, this table shows the suits and the corresponding integer codes:

Spades 7! 3

Hearts 7! 2

Diamonds 7! 1

Clubs 7! 0

This code makes it easy to compare cards; because higher suits map to higher numbers, we

can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to the corresponding

integer, and for face cards:

Jack 7! 11

Queen 7! 12

King 7! 13

I am using the 7! symbol to make it clear that these mappings are not part of the Python

program. They are part of the program design, but they don’t appear explicitly in the code.

The class definition for Card looks like this:

class Card:

"""Represents a standard playing card."""

def __init__(self, suit=0, rank=2):

self.suit = suit

self.rank = rank

As usual, the init method takes an optional parameter for each attribute. The default card

is the 2 of Clubs.

To create a Card, you call Card with the suit and rank of the card you want.

queen_of_diamonds = Card(1, 12)

Class attributes

In order to print Card objects in a way that people can easily read, we need a mapping

from the integer codes to the corresponding ranks and suits. A natural way to do that is

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

with lists of strings. We assign these lists to class attributes:

inside class Card:

suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']

rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',

'8', '9', '10', 'Jack', 'Queen', 'King']

def __str__(self):

return '%s of %s' % (Card.rank_names[self.rank],

Card.suit_names[self.suit])

Variables like suit_names and rank_names, which are defined inside a class but outside

of any method, are called class attributes because they are associated with the class object

Card.

This term distinguishes them from variables like suit and rank, which are called instance

attributes because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in __str__, self

is a Card object, and self.rank is its rank. Similarly, Card is a class object, and

Card.rank_names is a list of strings associated with the class.

Every card has its own suit and rank, but there is only one copy of suit_names and

rank_names.

Putting it all together, the expression Card.rank_names[self.rank] means “use the attribute

rank from the object self as an index into the list rank_names from the class Card,

and select the appropriate string.”

The first element of rank_names is None because there is no card with rank zero. By including

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

None as a place-keeper, we get a mapping with the nice property that the index 2 maps

to the string '2', and so on. To avoid this tweak, we could have used a dictionary instead

of a list.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(2, 11)

>>> print(card1)

Jack of Hearts

Comparing cards

For built-in types, there are relational operators (<, >, ==, etc.) that compare values and

determine

when one is greater than, less than, or equal to another. For programmer-defined

types, we can override the behavior of the built-in operators by providing a method named

__lt__, which stands for “less than”.

__lt__ takes two parameters, self and other, and returns True if self is strictly less than

other.

The correct ordering for cards is not obvious. For example, which is better, the 3 of Clubs

or the 2 of Diamonds? One has a higher rank, but the other has a higher suit. In order to

compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple, we’ll

make the arbitrary choice that suit is more important, so all of the Spades outrank all of the

Diamonds, and so on.

With that decided, we can write __lt__:

inside class Card:

def __lt__(self, other):

check the suits

if self.suit < other.suit: return True

if self.suit > other.suit: return False

suits are the same... check ranks

return self.rank < other.rank

You can write this more concisely using tuple comparison:

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

inside class Card:

def __lt__(self, other):

t1 = self.suit, self.rank

t2 = other.suit, other.rank

return t1 < t2

Decks

Now that we have Cards, the next step is to define Decks. Since a deck is made up of cards,

it is natural for each Deck to contain a list of cards as an attribute.

The following is a class definition for Deck. The init method creates the attribute cards and

generates the standard set of fifty-two cards:

class Deck:

def __init__(self):

self.cards = []

for suit in range(4):

for rank in range(1, 14):

card = Card(suit, rank)

self.cards.append(card)

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the

suits from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Each iteration creates

a new Card with the current suit and rank, and appends it to self.cards.

Printing the deck

Here is a __str__ method for Deck:

#inside class Deck:

def __str__(self):

res = []

for card in self.cards:

res.append(str(card))

return '\n'.join(res)

This method demonstrates an efficient way to accumulate a large string: building a list

of strings and then using the string method join. The built-in function str invokes the

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

__str__ method on each card and returns the string representation.

Since we invoke join on a newline character, the cards are separated by newlines. Here’s

what the result looks like:

>>> deck = Deck()

>>> print(deck)

Ace of Clubs

2 of Clubs

3 of Clubs

...

10 of Spades

Jack of Spades

Queen of Spades

King of Spades

Even though the result appears on 52 lines, it is one long string that contains newlines.

Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card from the deck and returns it.

The list method pop provides a convenient way to do that:

#inside class Deck:

def pop_card(self):

return self.cards.pop()

Since pop removes the last card in the list, we are dealing from the bottom of the deck.

To add a card, we can use the list method append:

#inside class Deck:

def add_card(self, card):

self.cards.append(card)

A method like this that uses another method without doing much work is sometimes called

a veneer. The metaphor comes from woodworking, where a veneer is a thin layer of good

quality wood glued to the surface of a cheaper piece of wood to improve the appearance.

In this case add_card is a “thin” method that expresses a list operation in terms appropriate

for decks. It improves the appearance, or interface, of the implementation.

As another example, we can write a Deck method named shuffle using the function

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

shuffle from the random module:

inside class Deck:

def shuffle(self):

random.shuffle(self.cards)

Don’t forget to import random.

Inheritance is the ability to define a new class that is a modified version of an existing class.

As an example, let’s say we want a class to represent a “hand”, that is, the cards held by

one player. A hand is similar to a deck: both are made up of a collection of cards, and both

require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don’t

make sense for a deck. For example, in poker we might compare two hands to see which

one wins. In bridge, we might compute a score for a hand in order to make a bid.

This relationship between classes—similar, but different—lends itself to inheritance. To

define a new class that inherits from an existing class, you put the name of the existing

class in parentheses:

class Hand(Deck):

"""Represents a hand of playing cards."""

This definition indicates that Hand inherits from Deck; that means we can use methods like

pop_card and add_card for Hands as well as Decks.

When a new class inherits from an existing one, the existing one is called the parent and

the new class is called the child.

In this example, Hand inherits __init__ from Deck, but it doesn’t really do what we want:

instead of populating the hand with 52 new cards, the init method for Hands should initialize

cards with an empty list.

If we provide an init method in the Hand class, it overrides the one in the Deck class:

inside class Hand:

def __init__(self, label=''):

self.cards = []

self.label = label

When you create a Hand, Python invokes this init method, not the one in Deck.

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

>>> hand = Hand('new hand')

>>> hand.cards

[]

>>> hand.label

'new hand'

The other methods are inherited from Deck, so we can use pop_card and add_card to deal

a card:

>>> deck = Deck()

>>> card = deck.pop_card()

>>> hand.add_card(card)

>>> print(hand)

King of Spades

A natural next step is to encapsulate this code in a method called move_cards:

#inside class Deck:

def move_cards(self, hand, num):

for i in range(num):

hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of cards to deal. It modifies

both self and hand, and returns None.

In some games, cards are moved from one hand to another, or from a hand back to the

deck. You can use move_cards for any of these operations: self can be either a Deck or a

Hand, and hand, despite the name, can also be a Deck.

Inheritance is a useful feature. Some programs that would be repetitive without inheritance

can be written more elegantly with it. Inheritance can facilitate code reuse, since you can

customize the behavior of parent classes without having to modify them. In some cases,

the inheritance structure reflects the natural structure of the problem, which makes the

design easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is

invoked, it is sometimes not clear where to find its definition. The relevant code may be

spread across several modules. Also, many of the things that can be done using inheritance

can be done as well or better without it.

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

Class diagrams

So far we have seen stack diagrams, which show the state of a program, and object diagrams,

which show the attributes of an object and their values. These diagrams represent

a snapshot in the execution of a program, so they change as the program runs.

They are also highly detailed; for some purposes, too detailed. A class diagram is a more

abstract representation of the structure of a program. Instead of showing individual objects,

it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For example,

each Rectangle contains a reference to a Point, and each Deck contains references to

many Cards. This kind of relationship is called HAS-A, as in, “a Rectangle has a

Point.”

• One class might inherit from another. This relationship is called IS-A, as in, “a Hand

is a kind of a Deck.”

• One class might depend on another in the sense that objects in one class take objects

in the second class as parameters, or use objects in the second class as part of a

computation. This kind of relationship is called a dependency.

A class diagram is a graphical representation of these relationships. For example, Figure

shows the relationships between Card, Deck and Hand.

The arrow with a hollow triangle head represents an IS-A relationship; in this case it indicates

that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationship; in this case a Deck has references

to Card objects.

The star (*) near the arrow head is a multiplicity; it indicates how many Cards a Deck has.

A multiplicity can be a simple number, like 52, a range, like 5..7 or a star, which indicates

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

that a Deck can have any number of Cards.

There are no dependencies in this diagram. They would normally be shown with a dashed

arrow. Or if there are a lot of dependencies, they are sometimes omitted.

A more detailed diagram might show that a Deck actually contains a list of Cards, but

built-in types like list and dict are usually not included in class diagrams.

Data encapsulation

The previous chapters demonstrate a development plan we might call “object-oriented

design”. We identified objects we needed—like Point, Rectangle and Time—and defined

classes to represent them. In each case there is an obvious correspondence between the

object and some entity in the real world (or at least a mathematical world).

But sometimes it is less obvious what objects you need and how they should interact. In

that case you need a different development plan. In the same way that we discovered

function interfaces by encapsulation and generalization, we can discover class interfaces

by data encapsulation.

Markov analysis, from Section 13.8, provides a good example. If you download my

code from http://thinkpython2.com/code/markov.py, you’ll see that it uses two global

variables—suffix_map and prefix—that are read and written from several functions.

suffix_map = {}

prefix = ()

Because these variables are global, we can only run one analysis at a time. If we read two

texts, their prefixes and suffixes would be added to the same data structures (which makes

for some interesting generated text).

To run multiple analyses, and keep them separate, we can encapsulate the state of each

analysis in an object. Here’s what that looks like:

class Markov:

def __init__(self):

self.suffix_map = {}

self.prefix = ()

Next, we transform the functions into methods. For example, here’s process_word:

def process_word(self, word, order=2):

if len(self.prefix) < order:

Classes And Objects, Inheritance

Lakshmi D L, Asst. Prof Dept. of ECE, BGSIT

self.prefix += (word,)

return

try:

self.suffix_map[self.prefix].append(word)

except KeyError:

if there is no entry for this prefix, make one

self.suffix_map[self.prefix] = [word]

self.prefix = shift(self.prefix, word)

Transforming a program like this—changing the design without changing the behavior—is

another example of refactoring (see Section 4.7).

This example suggests a development plan for designing objects and methods:

1. Start by writing functions that read and write global variables (when necessary).

2. Once you get the program working, look for associations between global variables

and the functions that use them.

3. Encapsulate related variables as attributes of an object.

4. Transform the associated functions into methods of the new class.

As an exercise, download my Markov code from http://thinkpython2.com/code/

markov.py, and follow the steps described above to encapsulate the global variables as attributes

of a new class called Markov. Solution: http://thinkpython2.com/code/Markov.

py (note the capital M).

